www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Funktionsbestimmung
Funktionsbestimmung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsbestimmung: Idee
Status: (Frage) beantwortet Status 
Datum: 13:10 Mi 13.08.2008
Autor: kati93

Aufgabe
Auf zwei geraden, sich rechtwinklig kreuzenden Straßen fahren zwei Autos (Fahrzeug A und Fahrzeug B) mit konstanter Geschwindigkeit. Fahrzeug A ist 1 km von der Kreuzung entfernt und hat eine Geschwindigkeit von 50 km/h. Gleichzeitig hat das Fahrzeug B eine Entfernung von 2 km und fährt mit 60 km/h.

a)Kommen die beiden Fahrzeuge über die Kreuzung ohne dass sie zusammenstoßen?
b)Welches ist die kleinste Entfernung der beiden Fahrzeuge voneinander?

Hallo zusammen,

ich glaub ich steh bei dieser Aufgabe völlig auf dem Schlauch!!! Ich krieg die b) einfach nicht gebacken! Ich hab es noch nicht mal hinbekommen Funktionen für die beiden Autos aufzustellen.
Ich hoffe ihr könnt mir einen Tipp geben!

Danke schön!

Liebe Grüße,

Kati

        
Bezug
Funktionsbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Mi 13.08.2008
Autor: angela.h.b.


> Auf zwei geraden, sich rechtwinklig kreuzenden Straßen
> fahren zwei Autos (Fahrzeug A und Fahrzeug B) mit
> konstanter Geschwindigkeit. Fahrzeug A ist 1 km von der
> Kreuzung entfernt und hat eine Geschwindigkeit von 50 km/h.
> Gleichzeitig hat das Fahrzeug B eine Entfernung von 2 km
> und fährt mit 60 km/h.
>
> a)Kommen die beiden Fahrzeuge über die Kreuzung ohne dass
> sie zusammenstoßen?
> b)Welches ist die kleinste Entfernung der beiden Fahrzeuge
> voneinander?

Hallo,

es sieht ja so aus, als hätte das was mit Vektorrechnung zu tun.

Ich würde erstmal ein Koordinatensystem so über die Landschaft legen, daß die beiden Straßen entlang der Koordinatenachsen verlaufen und die Kreuzung im Koordinatenursprung liegt.

Sagen wir, Auto A fährt auf der x-Achse, Auto B auf der y-Achse.


Zum Zeitpunkt t=0 ist das Auto A 1km vor der Kreuzung, es befindet sich also im Punkt [mm] \vektor{-1\\0}. [/mm]

Es fährt mit einer Geschwindigkeit von [mm] 50\bruch{km}{h} [/mm]  in Richtung [mm] \vektor{1\\0}. [/mm]

Das bedeutet, daß es nach der Zeit t (gemessen in Stunden) t*50km in Richtung [mm] \vektor{1\\0} [/mm] weitergefahren ist.

Also befindet sich das Auto A zum Zeitpunkt t an der Position [mm] \vec{r}_A(t)=\vektor{-1\\0} [/mm] + [mm] t\vektor{50\\0}. [/mm]


Die Funktion für B kannst Du entsprechend aufstellen.

Wenn Du die Entfernung der Autos wissen willst, schau Dir den Vektor, der von [mm] \vec{r}_B(t) [/mm] nach [mm] \vec{r}_A(t) [/mm]  weist, an.

Gruß v. Angela



Bezug
                
Bezug
Funktionsbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Mi 13.08.2008
Autor: kati93

Hallo Angela,

ja, so hatte ich auch gedacht, aber das Problem ist, (tut mir leid hab ich vergessen extra dazu zu schreiben, hab gedacht dass geht daraus hervor in welchen unterforum ich es gepostet habe), dass es ohne Vektorrechnung gelöst werden muss. Die Aufgabe ist aus einem reinen Analysis Buch.

Liebe Grüße,
Kati

Bezug
                        
Bezug
Funktionsbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Mi 13.08.2008
Autor: angela.h.b.


> Hallo Angela,
>
> ja, so hatte ich auch gedacht, aber das Problem ist, (tut
> mir leid hab ich vergessen extra dazu zu schreiben, hab
> gedacht dass geht daraus hervor in welchen unterforum ich
> es gepostet habe), dass es ohne Vektorrechnung gelöst
> werden muss. Die Aufgabe ist aus einem reinen Analysis
> Buch.

Hallo,

wenn Du dann den Betrag des Verbindungsvektors minimierst, verwendest Du ja Methoden der Analysis.

Oder Du schreibst:

Wagen A befindet sich zum Zeitpunkt  t im Punkt (50t-1/0), Wagen B im Punkt ...

Dann errechnest Du per Pythagoras den Abstand.

Gruß v. Angela





Bezug
                                
Bezug
Funktionsbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Mi 13.08.2008
Autor: kati93

Entschuldigung, ich muss leider nochmal nachfragen:

"wenn Du dann den Betrag des Verbindungsvektors minimierst,..." diese Antwort ist mir nicht ganz klar. Was genau ist der Verbindungsvektor und was meinst du mit minimieren?
Diese Frage jetzt allerdings nur aus Interesse, ich werde wohl versuchen es über Pythogoras zu lösen.
Aber leider auch hier nochmal eine Frage, weil ich da auf ein komisches Ergebis komme:
Also A: (50t-1/0) und B(0/60t-2)

dann die Gleichung für den Abstand d:

d²= (50t-1)² + (60t-2)²
dann hab ich die binomischen Formeln aufgelöst, zusammengefasst und die Wurzel gezogen, da kam ich auf:
d= [mm] \wurzel{6100t²-340t+5} [/mm]

dann hab ich  die erste Ableitung gebildet und 0 gesetzt und da kam ich auf t= [mm] \bruch{17}{160} [/mm]

eingesetzt in die Gleichung für d komme ich dann auf d=6,143, was mir aber sehr hoch erscheint. Was habe ich denn falsch gemacht?

Liebe Grüße,
Kati

Bezug
                                        
Bezug
Funktionsbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mi 13.08.2008
Autor: Al-Chwarizmi

Hallo kati,


>  d= [mm]\wurzel{6100t²-340t+5}[/mm]
>  
> dann hab ich  die erste Ableitung gebildet und 0 gesetzt
> und da kam ich auf t= [mm]\bruch{17}{160}[/mm]          [notok]

       das sollte wohl heissen:     t= [mm]\bruch{17}{610}[/mm]

dies ergibt dann einen wesentlich kleineren Wert für die
Minimaldistanz.

LG

Bezug
                                                
Bezug
Funktionsbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Mi 13.08.2008
Autor: kati93

Ohhh, du hast recht, das hab ich wohl falsch ausm Taschenrechner abgeschrieben! Vielen lieben Dank für deine schnelle Hilfe!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]