Funktionenschar Parabel < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Ein Seil, das an seinen Enden au gleicher Höhe befestigt wird, kann näherungsweise durch eine Parabel beschrieben werden. Der Graph ist die Funktionenschar ft(x)=t/2*(e^(x/t)+e^(-x/t)) (t [mm] \in \IR)
[/mm]
Wie muss t gewählt werden, damit der Graph von ft(x) den Verlauf eines Seiles modelliert, das zwischen zwei Pfosten mit dem Abstand a=1m hängt und einen Durchhang von d = 0,5 m hat? |
Ich habe erfahren, dass der Graph immer um t nach oben verschoben ist. Dann ist das Lösen der Aufgabe nicht mehr schwer.
Warum ist das aber so?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:19 Di 05.03.2013 | Autor: | notinX |
Hallo,
> Ein Seil, das an seinen Enden au gleicher Höhe befestigt
> wird, kann näherungsweise durch eine Parabel beschrieben
> werden. Der Graph ist die Funktionenschar
> ft(x)=t/2*(e^(x/t)+e^(-x/t)) (t [mm]\in \IR)[/mm]
>
> Wie muss t gewählt werden, damit der Graph von ft(x) den
> Verlauf eines Seiles modelliert, das zwischen zwei Pfosten
> mit dem Abstand a=1m hängt und einen Durchhang von d = 0,5
> m hat?
> Ich habe erfahren, dass der Graph immer um t nach oben
> verschoben ist. Dann ist das Lösen der Aufgabe nicht mehr
> schwer.
> Warum ist das aber so?
bestimme den Extrempunkt (Minimum) der Funktion, dann siehst Du es.
Gruß,
notinX
|
|
|
|
|
> Ein Seil, das an seinen Enden auf gleicher Höhe befestigt
> wird, kann näherungsweise durch eine Parabel beschrieben
> werden. Der Graph ist die Funktionenschar
> [mm] f_t(x)=t/2*(e^{x/t}+e^{-x/t}) [/mm] (t [mm]\in \IR)[/mm]
>
> Wie muss t gewählt werden, damit der Graph von ft(x) den
> Verlauf eines Seiles modelliert, das zwischen zwei Pfosten
> mit dem Abstand a=1m hängt und einen Durchhang von d = 0,5
> m hat?
> Ich habe erfahren, dass der Graph immer um t nach oben
> verschoben ist. Dann ist das Lösen der Aufgabe nicht mehr
> schwer.
> Warum ist das aber so?
Hallo MatheSckell,
es ist etwas befremdlich, dass da von der näherungsweisen
Beschreibung durch eine Parabel gesprochen, aber dann
doch die Gleichung einer Kettenlinie angegeben wird,
welche ein durchhängendes Seil im Prinzip exakt beschreibt
(wenn man ein Seil mit Biegesteifigkeit null voraussetzt).
Zur Aufgabe: setze (wegen der Symmetrie der Kurve)
einfach einmal die Werte [mm] x_L=-1/2 [/mm] und [mm] x_R=+1/2 [/mm] für x in
die Gleichung ein (um [mm] x_R [/mm] - [mm] x_L [/mm] = a = 1 zu erhalten)
und betrachte den Graphen von [mm] f_t [/mm] im Intervall von
[mm] x_L [/mm] bis [mm] x_R [/mm] !
Wenn da aber schon von einer Parabel die Rede war,
könntest du ja mal zum Vergleich eine solche betrachten,
welche durch eine quadratische Funktion p mit [mm] p(x)=A*x^2+C
[/mm]
beschrieben wird und an den Stellen [mm] x_L [/mm] und [mm] x_R [/mm] und bei
x=0 mit der Kettenlinie übereinstimmt !
LG , Al-Chw.
|
|
|
|