Funktion linear oder nicht < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:29 So 15.12.2013 | Autor: | IljaShk |
Aufgabe | Zeigen oder widerlegen Sie, dass die folgenden Funktionen linear sind: |
Hallo,
ich weiß grad nicht weiter. Und zwar soll ich zu folgenden Funktionen sagen, ob sie linear sind oder nicht:
a) f: R -> R, x -> x+10
b) f:R -> R, x -> [mm] -x^2 [/mm] +10
c) f:R -> R, x -> -2x
d) f:R -> R, x -> x(x+1)(x-1)
e) f:R -> R, x -> (x-1)(x+3) - [mm] x^2
[/mm]
Das heißt doch, dass nur jedem Y-Wert ein X-Wert zugeschrieben wird? Außerdem hab ich gehört, dass das Verhältnis zwischen dem Wert von X und Y immer gleich bleiben muss...
Irgendwie bin ich total durcheinander und weiß nicht weiter...
Wenn mir jemand helfen kann, vielen Dank im Voraus!! :)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:38 So 15.12.2013 | Autor: | Sax |
Hi,
hier dürfte allerdings eher eine Definition gemeint sein, bei der (im Sinne von "kubischer Funktion", "quadratischer Funktion", "linearer Funktion") eine ganzrationale Funktion von höchstens erstem Grad als linear bezeichnet wird.
Gruß Sax.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:04 So 15.12.2013 | Autor: | Loddar |
Hallo Sax!
Darüber habe ich auch kurz nachgedacht. Aber das passt m.E. nicht unbedingt zu einer Uni-Frage.
Gruß
Loddar
|
|
|
|
|
Hey Loddar und IljaShk,
> $ [mm] f(a\cdot{}x) [/mm] \ = \ [mm] a\cdot{}x+10 [/mm] \ [mm] \not= [/mm] \ [mm] a\cdot{}(x+10) [/mm] \ = \ [mm] a\cdot{}f(x) [/mm] $
Da das leider viel zu oft vergessen wird, vor allem von Unifrischlingen (zu IljaShk wink), wollt ich gern nochmal drauf hinweisen, dass hier ein explizites Gegenbeispiel sehr schön wäre.
Also etwa $x=1, a=0$. Dann ist $f(a*x) = f(0*1)=f(0)=0+10$ und $a*f(x) = 0*f(1) = 0*11 = 0$.
Und es gilt $10 [mm] \neq [/mm] 0$, zumindest über [mm] $\IR$.
[/mm]
Ist in der Aufgabenstellung etwa $R$ ein beliebiger kommutativer Ring, so wird das Widerlegen deutlich schwerer; es werden sogar manche der Abbildungen ja nach Ring linear.
lg
Schadow
|
|
|
|