Fresnelsche Formeln < Optik < Physik < Naturwiss. < Vorhilfe
|
Also ich habe das Problem, dass ich die fresnelschen Formeln für die Reflektion von elektromagnetischen Wellen benutzen möchte. Dabei kommt vor allem der Spezialfall des senkrechten Einfalls vor.
Für diesen Spezialfall vereinfachen sich die Reflektionskoeffizienten zu:
[mm] $r_s =\frac{n_1-n_2}{n_1+n_2} [/mm] = - [mm] r_p$ [/mm] Quelle: Wiki-DE
Was daraus sofort resultiert ist, dass die senkrechte Komponente auch noch einen Phasensprung um [mm] $\pi$ [/mm] durchführt. (Unter der Vorraussetzung, dass [mm] $n_1 [/mm] = 1$ und [mm] $n_2 [/mm] > 1$.)
Nun mein Problem dazu: Wie kann ich jetzt noch zwischen parallel und senkrecht unterscheiden? Bei senkrechten Einfall kann man ja keine Einfallsebene definieren.
Gruß,
Sunny
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:24 Mi 04.04.2012 | Autor: | leduart |
Hallo
Was meinst du mit parallel? dann fällt doch garnichts ein?
und senkrechter Einfall ist doch die Einfallsebene die reflektierende Oberfläche?
vielleicht erklärst du die eigentliche aufgabe, damit man dein Problem versteht.
Gruss leduart
|
|
|
|
|
Konkret gibt es dazu leider keine Aufgabenstellung. Mit parallel und senkrecht meinte ich die Polarisation.
Also die Begriffe, wie ich sie verstehe (mit strahlenoptischen Begriffen):
- Senkrechter Einfall bedeutet, dass der Einfallswinkel [mm] $\theta [/mm] = 0$ ist. Dies bedeutet gleichzeitig, dass der reflektierte Strahl den gleichen Weg zurückgeht.
- Die Einfallsebene ist die Ebene, die senkrecht auf dem Substrat steht und die Richtung des einfallenden Strahls beinhaltet.
- Parallele/senkrechte Polarisation bedeutet nun, dass die Polarisation parallel/senkrecht zur Einfallsebene liegt.
Das Problem, das ich nun habe, ist, dass bei einem senkrechten Einfall keine oder unendliche viele Einfallsebenen definiert sind. Demnach ist auch die parallele bzw. senkrechte Richtung nicht definiert, was wiederum dazu führt, dass man nicht weiß, ob nun ein Phasensprung auftritt oder nicht.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:03 Mi 04.04.2012 | Autor: | leduart |
Hallo
für alle Polarisationsrichtungen ist bei senkrechtem Einfall der Phasensprung [mm] \pi. [/mm] alle palarisationsrichtungen sind "gleichberechtigt. Oder geht es um "doppelbrechende" Kristalle?
Gruss leduart
|
|
|
|
|
Danke Leduart.
Nach der Aussage
> für alle Polarisationsrichtungen ist bei senkrechtem
> Einfall der Phasensprung [mm]\pi.[/mm] alle palarisationsrichtungen
> sind "gleichberechtigt.
habe ich gesucht.
Gruß,
Sunny
|
|
|
|