www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Fredholm Operatoren
Fredholm Operatoren < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fredholm Operatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 So 26.06.2011
Autor: Braten

Hallo,

ich habe keine konkrete Aufgabe oder so etwas. Stattdessen möchte ich nur gerne wissen, ob jeder lineare Operator zwischen endlich dimensionalen normierten Räumen auch ein Fredholm-Operator ist.

Meiner Meinung nach ist das korrekt. Denn ein Operator T :V->W ist ein Fredholm Operator, falls gilt:
1)dim [mm] ker(T)<\infty [/mm]
[mm] 2)im(T)=\overline{im(T)} [/mm]
3)dim [mm] coker(T)<\infty [/mm]
Wenn nun aber V,W endlich dimensional sind, dann sind sicherlich 1) und 3) erfüllt.

2) dürfte aber auch erfüllt sein, da T stetig ist.

Stimmt obige Begründung dafür, dass jeder lineare Operator Fredholm ist?

MfG

        
Bezug
Fredholm Operatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 So 26.06.2011
Autor: fred97


> Hallo,
>  
> ich habe keine konkrete Aufgabe oder so etwas. Stattdessen
> möchte ich nur gerne wissen, ob jeder lineare Operator
> zwischen endlich dimensionalen normierten Räumen auch ein
> Fredholm-Operator ist.

Ja


>  
> Meiner Meinung nach ist das korrekt. Denn ein Operator T
> :V->W ist ein Fredholm Operator, falls gilt:
>  1)dim [mm]ker(T)<\infty[/mm]
>  [mm]2)im(T)=\overline{im(T)}[/mm]
>  3)dim [mm]coker(T)<\infty[/mm]
>  Wenn nun aber V,W endlich dimensional sind, dann sind
> sicherlich 1) und 3) erfüllt.
>  
> 2) dürfte aber auch erfüllt sein, da T stetig ist.

Zwischen 2 endlichdimensionalen normierten Räumen ist jeder lineare Operator stetig.

Ein Unterraum eines endlichdim. normierten Raumes ist stets abgwschlossen.

FRED

>  
> Stimmt obige Begründung dafür, dass jeder lineare
> Operator Fredholm ist?
>  
> MfG


Bezug
        
Bezug
Fredholm Operatoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 So 26.06.2011
Autor: fred97


> Hallo,
>  
> ich habe keine konkrete Aufgabe oder so etwas. Stattdessen
> möchte ich nur gerne wissen, ob jeder lineare Operator
> zwischen endlich dimensionalen normierten Räumen auch ein
> Fredholm-Operator ist.
>  
> Meiner Meinung nach ist das korrekt. Denn ein Operator T
> :V->W ist ein Fredholm Operator, falls gilt:
>  1)dim [mm]ker(T)<\infty[/mm]
>  [mm]2)im(T)=\overline{im(T)}[/mm]

Noch etwas: sind V und W Banachräume, so ist die Forderung 2) nicht nötig:

[]Satz von Kato


FRED


>  3)dim [mm]coker(T)<\infty[/mm]
>  Wenn nun aber V,W endlich dimensional sind, dann sind
> sicherlich 1) und 3) erfüllt.
>  
> 2) dürfte aber auch erfüllt sein, da T stetig ist.
>  
> Stimmt obige Begründung dafür, dass jeder lineare
> Operator Fredholm ist?
>  
> MfG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]