www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Fourier-Reihenentwicklung
Fourier-Reihenentwicklung < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier-Reihenentwicklung: Idee
Status: (Frage) beantwortet Status 
Datum: 16:22 Mi 11.03.2015
Autor: binhbob

Hi Leute. Ich bin gerade dabei eine Fourier-Analyse für eine periodische Funktion zu machen und schaffe es leider nicht das richtige Ergebnis zu bekommen.
Die Funktion die angenähert werden soll wird in zwei Teilgebiete unterteilt. In der ersten Hälfte ist die Funktion eine Sinus-Funktion mit der doppelten Frequenz und in der zweiten Hälfte die Nullfunktion. Oder Siehe Link: []Graph
Hier soll Alpha 0.5 sein.

P0 ist Null und die Sinus Reihenglieder müssen nicht berücksichtig werden da sie auch alle Null werden.

Die Pcn(Cos) Reihenglieder bestimme dann mit folgender Funktion.

[mm] Pcn=(2*Pmax/T)*\integral_{0}^{T/2}{sin((\bruch{2*pi*t}{0.5*T})*cos(\bruch{2*n*pi*t}{T}) dt} [/mm]

Das Integral auflösen ergibt (Mit Maple und Hand gemacht sollte richtig sein): Pcn= [mm] 3/2*(\bruch{cos(n*pi)-1}{\bruch{1}{4}*n²-1)} [/mm]

Koeffizienten ergeben:
Pc1: 1,273
Pc2: 0
Pc3: -0,7639
Pc4: 0
Pc5: -0,1819

Jedoch zeigt sich beim plotten nicht die gewünscht funktion... []Wolfram-Alpha plot

Irgendwie denke ich das ich da etwas übersehen hab...Die Funktion im ersten Abschnitt sieht ja schon wie die gesuchte Funktion aus aber im zweiten Teilabschnitt stimmt da was nicht.
Kann einer mir da weiterhelfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fourier-Reihenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 Mi 11.03.2015
Autor: binhbob

Hey ich konnte es bereits selber lösen. Trotzdem Danke!
Ich hab beim Integrieren der Sinus-Anteile, vergessen eine Fallunterscheiden zu machen und da kommt noch ein Sinusanteil dazu mit +1.5*sin(2*2*Pi*t/T)

Cheers

Bezug
                
Bezug
Fourier-Reihenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Mi 11.03.2015
Autor: rmix22


> Hey ich konnte es bereits selber lösen. Trotzdem Danke!
>  Ich hab beim Integrieren der Sinus-Anteile, vergessen eine
> Fallunterscheiden zu machen und da kommt noch ein
> Sinusanteil dazu mit +1.5*sin(2*2*Pi*t/T)
>  

[ok] Genau!
Hab deine Mitteilung erst nach meiner Antwort gesehen.

Gruß RMix


Bezug
        
Bezug
Fourier-Reihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Mi 11.03.2015
Autor: rmix22


> Hi Leute. Ich bin gerade dabei eine Fourier-Analyse für
> eine periodische Funktion zu machen und schaffe es leider
> nicht das richtige Ergebnis zu bekommen.
>  Die Funktion die angenähert werden soll wird in zwei
> Teilgebiete unterteilt. In der ersten Hälfte ist die
> Funktion eine Sinus-Funktion mit der doppelten Frequenz und
> in der zweiten Hälfte die Nullfunktion. Oder Siehe Link:
> []Graph
>  
> Hier soll Alpha 0.5 sein.
>  
> P0 ist Null und die Sinus Reihenglieder müssen nicht
> berücksichtig werden da sie auch alle Null werden.

Aha!? Und die Summe von ausschließlich nicht phasenverschobenen Kosinusfunktionen soll dann eine Funktion ergeben, die nicht gerade (also deren Graph nicht symmetrisch zur Ordinatenachse) ist? Wie soll denn das funktionieren?
Ich würde das an deiner Stelle nochmals überdenken.

>  
> Die Pcn(Cos) Reihenglieder bestimme dann mit folgender
> Funktion.
>  
> [mm]Pcn=(2*Pmax/T)*\integral_{0}^{T/2}{sin((\bruch{2*pi*t}{0.5*T})*cos(\bruch{2*n*pi*t}{T}) dt}[/mm]
>  
> Das Integral auflösen ergibt (Mit Maple und Hand gemacht
> sollte richtig sein): Pcn=
> [mm]3/2*(\bruch{cos(n*pi)-1}{\bruch{1}{4}*n²-1)}[/mm]
>  
> Koeffizienten ergeben:
>  Pc1: 1,273
>  Pc2: 0
>  Pc3: -0,7639
>  Pc4: 0
>  Pc5: -0,1819
>  
> Jedoch zeigt sich beim plotten nicht die gewünscht
> funktion...
> []Wolfram-Alpha plot
>  

Dieser Link funktioniert so nicht, da die Argumentklammern verschwinden. Ergänzt man sie, so sieht man (nicht überraschend) einen Graphen, der Symmetrie zur Ordinatenachse zeigt!


> Irgendwie denke ich das ich da etwas übersehen hab...Die
> Funktion im ersten Abschnitt sieht ja schon wie die
> gesuchte Funktion aus aber im zweiten Teilabschnitt stimmt
> da was nicht.
>  Kann einer mir da weiterhelfen?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß RMix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]