www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Flächeninhalt
Flächeninhalt < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Sa 05.05.2007
Autor: Nicole20

Hallo, kann mir jemand etwas erklären?

Wie bestimmt man den Flächeninhalt einer Menge?

zum Beispiel hierbei:

b>0
[mm] M={(x,y)\varepsilon\IR² | 0 \le x \le b, |y| \le x*exp(x)} [/mm]



        
Bezug
Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Sa 05.05.2007
Autor: condoleo


> b>0
> [mm]M={(x,y)\varepsilon\IR² | 0 \le x \le b, |y| \le x*exp(x)}[/mm]

Also ich würde einfach [mm] \integral_{0}^{b}x* e^x\, [/mm] dx bestimmen.

LG
condoleo  



Bezug
                
Bezug
Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Sa 05.05.2007
Autor: Nicole20

ok gut dachte ich mir schon und dann brauche ich ja die Stammfunktion von x*exp(x) nicht wahr?

Lautet die zufällig [mm] F(x)=e^{x+x} [/mm]   ???

Bezug
                        
Bezug
Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Sa 05.05.2007
Autor: schachuzipus

Hallo Nicole,

nein, leite mal [mm] e^{2x} [/mm] ab, da kommt nicht [mm] x\cdot{}e^x [/mm] raus

Das Integral [mm] \int{xe^xdx} [/mm] kannst du mittels partieller Integration ermitteln.

Setze dazu x=u(x) und [mm] e^x=v'(x) [/mm]


LG

schachuzipus

Bezug
                                
Bezug
Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Sa 05.05.2007
Autor: Nicole20

ok hab ich probiert aber ich weiß nicht ob ich mit der partiellen integration so gut klar komme.
Kommt da dann folgendes raus:

[mm] b*e^{b} [/mm] + [mm] \integral_{0}^{b}{1*e^{x} dx} [/mm]

Bezug
                                        
Bezug
Flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Sa 05.05.2007
Autor: Nicole20

hab mich vertan glaube da kommt ein + an stelle von -

Bezug
                                                
Bezug
Flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 Sa 05.05.2007
Autor: condoleo

Na dann stimmt es ;o)

Bezug
                                        
Bezug
Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Sa 05.05.2007
Autor: schachuzipus

Hallo Nicole,

du hast nen VZF vor dem Integral eingebaut.

Außerdem kannste das Integral ja auch berechnen.

Also [mm] \int\limits_{0}^b{xe^xdx}=xe^x\red{-}\int\limits_{0}^b{e^xdx}=\left[xe^x-e^x\right]_0^b=\left[e^x(x-1)\right]_0^b=e^b(b-1)+1 [/mm]


LG

schachuzipus

Bezug
                                                
Bezug
Flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Sa 05.05.2007
Autor: Nicole20

super klasse und danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]