www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Flächenberechnung Parabel
Flächenberechnung Parabel < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenberechnung Parabel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:54 So 09.11.2008
Autor: UNR8D

Aufgabe
Die Parabel mit der Gleichung [mm] f(x)=-\bruch{1}{a}x²+a (a\not=0) [/mm] schneidet die x-Achse in den Punkten P1 und P2. Ihr Scheitelpunkt sei Q. Wie verhält sich der Inhalt der Fläche, die die Parabel mit der x-Achse einschließt zum Inhalt des Dreiecks P1P2Q ?

Hi,
da sich meine Lösung von der angegebenen unterschiedet, ich aber meinen Fehler nicht finde bitte ich euch den mal kurz für mich zu suchen ;).

Also P1 bzw P2 als Nullstellen bestimmen, ergibt x=-a bzw x=+a.
Entsprechend mit Integral die "Parabelfläche" bestimmen ergibt [mm] 2*\integral_{0}^{a}{f(x) dx} [/mm] = [mm] \bruch{4}{3} [/mm] a² .

Soweit stimmts mit der Lösung überein.

Dann zur Dreiecksfläche. Dazu habe ich den Funktionswert für den Scheitelpunkt bestimmt.
f'(x) = [mm] \bruch{-2}{a} [/mm] * x
0 = - [mm] \bruch{2}{a} [/mm] * x
x = - [mm] \bruch{a}{2} [/mm]
In f(x) eingesetzt
f(- [mm] \bruch{a}{2} [/mm] ) = - [mm] \bruch{1}{a} [/mm] * [mm] (\bruch{a²}{4}) [/mm] + a =  [mm] \bruch{3}{4} [/mm] a  

Für die Dreiecksfläche also
1/2 * 2a* 3/4 a = 3/4 a²

A(parabel) : A(dreieck) = 16:9

Laut Lösung ergibt sich aber für die Dreiecksfläche a² und ein Verhältnis von 4:3.

Teilt mir bitte mit wo ich nen Fehler gemacht hab ;)

        
Bezug
Flächenberechnung Parabel: Scheitelpunkt falsch
Status: (Antwort) fertig Status 
Datum: 14:56 So 09.11.2008
Autor: Loddar

Hallo UNR8D!


Du hast den Scheitelpunkt falsch berechnet. Es gilt [mm] $S_a [/mm] \ [mm] \left( \ 0 \ ; \ a \ \right)$ [/mm] ; denn:

>  0 = - [mm]\bruch{2}{a}[/mm] * x
>  x = - [mm]\bruch{a}{2}[/mm]

... hieraus ergibt sich doch [mm] $x_S [/mm] \ = \ 0$ .


Du hättest den Scheitelpunkt auch schneller ermitteln können: dieser liegt nämlich immer exakt in der Mitte zwischen den beiden Nullstellen (soweit vorhanden).


Gruß
Loddar


Bezug
                
Bezug
Flächenberechnung Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 So 09.11.2008
Autor: UNR8D

Hallo Loddar,
erstmal danke, dass der Scheitelpunkt 0 sein muss ist soweit verständlich.

Dass mir die Ableitung, 0 gesetzt und nach x aufgelöst nicht x = - a/2 gibt also z.B. für a = 5 x = -2,5 wäre sondern eben immer 0 ist liegt wohl dran, dass sich aus
0 = - 2/a * x eigentlich 0*-a/2 = x ergibt?

Bezug
                        
Bezug
Flächenberechnung Parabel: 0 mal irgendwas
Status: (Antwort) fertig Status 
Datum: 17:01 So 09.11.2008
Autor: Loddar

Hallo UNR8D!


> Dass mir die Ableitung, 0 gesetzt und nach x aufgelöst
> nicht x = - a/2 gibt also z.B. für a = 5 x = -2,5 wäre
> sondern eben immer 0 ist liegt wohl dran, dass sich aus
>  0 = - 2/a * x eigentlich 0*-a/2 = x ergibt?

Na, und [mm] $0*\text{irgendwas bestimmtes}$ [/mm] ergibt ... ?


Gruß
Loddar



Bezug
                                
Bezug
Flächenberechnung Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 So 09.11.2008
Autor: UNR8D

Ja ist klar ;)
Mein Fehler war nur dass ich eben nicht 0 * ... stehen hatte sondern eben nur
x = - $ [mm] \bruch{a}{2} [/mm] $
und du das auch so zitiert hattest ;)
Aber jetzt versteh ichs komplett

danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]