www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Fehlerabschätzung bei lin GLS
Fehlerabschätzung bei lin GLS < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerabschätzung bei lin GLS: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:31 Sa 23.05.2009
Autor: Kiki1988

Aufgabe
Seien [mm] A=\pmat{ 2 & 1 \\ 1 & 2 } [/mm] mit [mm] A^{-1}=\pmat{\bruch 2 3 & - \bruch 1 3 \\ - \bruch 1 3 & \bruch 2 3}, [/mm] b= [mm] \pmat{7 \\ 5}, [/mm] x= [mm] \pmat{3 \\ 1}. [/mm]
Für Näherungen [mm] \overline{A}, \overline{b}, \overline{x} [/mm] von A, b, x gelte [mm] \overline{A} \overline{x} [/mm] = [mm] \overline{b} [/mm] mit [mm] \begin{Vmatrix} \overline{b} - b \end{Vmatrix}\le \bruch{1}{800}. [/mm]
Wie groß darf der Fehler [mm] \begin{Vmatrix} \overline{A} - A \end{Vmatrix} [/mm] sein, damit [mm] \begin{Vmatrix} \overline{x} - x \end{Vmatrix} \le [/mm] 0.3 gilt?
Berechnen Sie die Abschätzung für den Fehler in der
a) Supremumsnorm
b) Spektralnorm für x

Hallo, ich verstehe bei der Aufgabe nicht so ganz was ich da machen soll.
Mein Ansatz zu a):
[mm] x=f(b)=A^{-1}b [/mm]
Berechne [mm] K_{rel}=\bruch{\begin{Vmatrix} b \end{Vmatrix}_{\infty} \begin{Vmatrix} f'(b) \end{Vmatrix}_{\infty} }{\begin{Vmatrix} f(b) \end{Vmatrix}_{\infty} } [/mm]
Dann erhalte ich [mm] K_{rel}=\bruch73 [/mm]
In der Vorlesung hatten wir folgende Abschätzung:
[mm] \bruch{\begin{Vmatrix} f(\overline{b}) - f(b) \end{Vmatrix}}{\begin{Vmatrix} f(b) \end{Vmatrix}}\le K_{rel} \bruch{\begin{Vmatrix} \overline{b} - b \end{Vmatrix}}{\begin{Vmatrix} b \end{Vmatrix}} [/mm]
Hier kommen jetzt die Probleme, denn ich habe ja garkein [mm] \overline{A} [/mm] da drin oder ist meine Funktion falsch gewählt?
Muss ich [mm] \overline{f}(\overline{b}) [/mm] betrachten in der Abschätzung, wobei [mm] \overline{f}(\overline{b})=\overline{A^{-1}}\overline{b} [/mm] = [mm] \overline{x}? [/mm] Aber gilt die Abschätzung dann?

Die Aufgabe sollte eigentlich nicht schwer sein, aber durch das hin und her probieren weiß ich mittlerweile überhaupt nichtmehr was noch Sinn macht...
Ist zumidest der Ansatz [mm] K_{rel} [/mm] und die Abschätzung zu betrachten richtig? Und wenn ja, warum funktioniert das mit der Funktion oben nicht?
Wäre super wenn mich jemand in die richtige Richtung stupsen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fehlerabschätzung bei lin GLS: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 28.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]