www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Faltungsoperator
Faltungsoperator < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltungsoperator: Fourierreihe, Eigenwerte
Status: (Frage) überfällig Status 
Datum: 21:01 Sa 15.12.2012
Autor: mikexx

Aufgabe
Es sei [mm] $k\colon\mathbb{R}\to\mathbb{C}$ [/mm] eine 1-periodische Funktion mit [mm] $k|[0,1]\in L^2[0,1]$. [/mm] Definiere den Faltungsoperator $T$ durch

[mm] $f\mapsto\int\limits_{[0,1]}k(s-t)f(t)\, [/mm] dt$.

Enwickle $k$ in eine Fourierreihe und finde dadurch die Eigenwerte und Eigenfunktionen.


Hallo & Moin!

Ich hab also erstmal $k$ in eine Fourierreihe entwickelt und zwar in eine komplexe:

[mm] $k(t)=\sum\limits_{n=-\infty}^{\infty}c_ne^{in2\pi t}$, [/mm] wobei

[mm] $c_n=\int\limits_0^1 k(t)e^{-in2\pi t}\, [/mm] dt$.

Dann habe ich das in das Integral mal eingesetzt:

[mm] $\int\limits_0^1 k(s-t)f(t)\, dt=\int\limits_0^1\sum\limits_{n=-\infty}^{\infty}c_ne^{in2\pi (s-t)}f(t)\, [/mm] dt$


Wie geht es jetzt weiter, wie kann ich weitermachen?

Liebe Grüße


        
Bezug
Faltungsoperator: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:11 So 16.12.2012
Autor: mikexx


> Dann habe ich das in das Integral mal eingesetzt:
>  
> [mm]\int\limits_0^1 k(s-t)f(t)\, dt=\int\limits_0^1\sum\limits_{n=-\infty}^{\infty}c_ne^{in2\pi (s-t)}f(t)\, dt[/mm]
>  
>
> Wie geht es jetzt weiter, wie kann ich weitermachen?

Kann ich vllt. Integral und Summe vertauschen mit dem Satz v. Lebesgue?

[mm] $\sum\limits_{n=-\infty}^{\infty}c_n e^{2\pi ins}\int\limits_0^1 e^{2\pi int}f(t)\, [/mm] dt$?

Ist eigentlich $f$ ebenfalls eine 1-periodische Funktion? Wenn ja, dann sind die hier vorkommenden Integrale doch die Fourier-Koeffizienten von $f$?

Kann man hiermit jetzt irgendwie die Eigenwerte bzw. Eigenfunktionen bestimmten?


Bitte helft mir, ich schaffe es alleine nicht.

Viele Grüße
mikexx


Bezug
                
Bezug
Faltungsoperator: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 18.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Faltungsoperator: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 17.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]