Faktorraum Anwendungsaufgabe < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei $V = [mm] \IQ^{3}$ [/mm] und $U:= [mm] Lin(\vektor{1\\0\\2})$. [/mm] Bestimme eine Basis des Faktorraums $V/U$ und stelle [mm] $[\vektor{2\\2\\-2}]$ [/mm] in dieser Basis dar. |
Hallo!
Ich habe mich mal an dieser Aufgabe versucht und würde gern wissen, ob das richtig ist:
Wir haben mal irgendwann eine Übungsaufgabe gehabt, deren Aussage in etwa war: Wenn $V = [mm] U\oplus [/mm] W$ (direkte Summe), dann ist [mm] $\phi [/mm] : W [mm] \to [/mm] V/U, w [mm] \mapsto [/mm] [w]$ ein Isomorphismus.
Theoretisch müsste ich also nur so ein W bestimmen, dann eine Basis von W, und da [mm] \phi [/mm] ja ein Isomorphismus ist, wären die Bilder von den Basisvektoren von W auch Basisvektoren von V/U.
Soweit meine Überlegungen, nun die Praxis:
Ich nehme $W = [mm] Lin(\vektor{1\\0\\0},\vektor{0\\1\\0})$. [/mm] Dann gilt [mm] $U\oplus [/mm] W = V$.
[mm] $v_{1}:=\phi(\vektor{1\\0\\0}) [/mm] = [mm] [\vektor{1\\0\\0}] [/mm] = [mm] \vektor{1\\0\\0} [/mm] + U = [mm] \{\vektor{1\\0\\0} + \lambda*\vektor{1\\0\\2},\lambda\in\IQ\}$,
[/mm]
[mm] $v_{2}:=\phi(\vektor{0\\1\\0}) [/mm] = [mm] [\vektor{0\\1\\0}] [/mm] = [mm] \vektor{0\\1\\0} [/mm] + U = [mm] \{\vektor{0\\1\\0} + \lambda*\vektor{1\\0\\2},\lambda\in\IQ\}.$
[/mm]
Nun ist:
[mm] $[\vektor{2\\2\\-2}] [/mm] = [mm] [\vektor{2\\0\\0}] [/mm] + [mm] 2*[\vektor{0\\1\\-1}] [/mm] = [mm] v_{1} [/mm] + [mm] 2*v_{2}$
[/mm]
Nun die für mich spannende Frage: Stimmt auch nur einwas, was hier steht ?
Sind die Notationen korrekt (insbesondere am Ende [mm] v_{1} [/mm] und nicht [mm] [v_{1}]) [/mm] ?
Vielen Dank für Eure Hilfe!
Grüße,
Stefan
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:03 Fr 12.02.2010 | Autor: | tobit09 |
> Ich habe mich mal an dieser Aufgabe versucht und würde
> gern wissen, ob das richtig ist:
>
> Wir haben mal irgendwann eine Übungsaufgabe gehabt, deren
> Aussage in etwa war: Wenn [mm]V = U\oplus W[/mm] (direkte Summe),
> dann ist [mm]\phi : W \to V/U, w \mapsto [w][/mm] ein
> Isomorphismus.
>
> Theoretisch müsste ich also nur so ein W bestimmen, dann
> eine Basis von W, und da [mm]\phi[/mm] ja ein Isomorphismus ist,
> wären die Bilder von den Basisvektoren von W auch
> Basisvektoren von V/U.
>
> Soweit meine Überlegungen, nun die Praxis:
>
> Ich nehme [mm]W = Lin(\vektor{1\\0\\0},\vektor{0\\1\\0})[/mm]. Dann
> gilt [mm]U\oplus W = V[/mm].
>
> [mm]v_{1}:=\phi(\vektor{1\\0\\0}) = [\vektor{1\\0\\0}] = \vektor{1\\0\\0} + U = \{\vektor{1\\0\\0} + \lambda*\vektor{1\\0\\2},\lambda\in\IQ\}[/mm],
>
> [mm]v_{2}:=\phi(\vektor{0\\1\\0}) = [\vektor{0\\1\\0}] = \vektor{0\\1\\0} + U = \{\vektor{0\\1\\0} + \lambda*\vektor{1\\0\\2},\lambda\in\IQ\}.[/mm]
Gute Idee, gute Umsetzung! (Wenn man Faktorräume ausführlich in der Vorlesung behandelt, lernt man übrigens üblicherweise auch, wie man Basen von Faktorräumen erhalten kann.)
> Nun ist:
>
> [mm][\vektor{2\\2\\-2}] = [\vektor{2\\0\\0}] + 2*[\vektor{0\\1\\-1}][/mm]
> [mm]= v_{1} + 2*v_{2}[/mm]
Da hast du dich wohl verrechnet? Das stimmt jedenfalls nicht. Du suchst [mm] $\lambda_1,\lambda_2\in\IQ$ [/mm] mit [mm] $[\vektor{2\\2\\-2}] [/mm] = [mm] \lambda_1[\vektor{1\\0\\0}] [/mm] + [mm] \lambda_2[\vektor{0\\1\\0}]=[\vektor{\lambda_1\\\lambda_2\\0}]$, [/mm] d.h. [mm] $\vektor{\lambda_1\\\lambda_2\\0}-\vektor{2\\2\\-2}\in [/mm] U$, d.h. ex. [mm] $\lambda\in\IQ$ [/mm] mit [mm] $\lambda\vektor{1\\0\\2}=\vektor{\lambda_1\\\lambda_2\\0}-\vektor{2\\2\\-2}$. [/mm] Findest du nun solche [mm] $\lambda_1,\lambda_2$?
[/mm]
> Sind die Notationen korrekt (insbesondere am Ende [mm]v_{1}[/mm]
> und nicht [mm][v_{1}])[/mm] ?
Ja. [mm] $v_1$ [/mm] ist ja bei deiner Definition ein Vektor des Faktorraumes, nicht von V.
|
|
|
|
|
Hallo Tobias,
auch hier danke für deine Antwort!
> > [mm]v_{1}:=\phi(\vektor{1\\0\\0}) = [\vektor{1\\0\\0}] = \vektor{1\\0\\0} + U = \{\vektor{1\\0\\0} + \lambda*\vektor{1\\0\\2},\lambda\in\IQ\}[/mm],
>
> >
> > [mm]v_{2}:=\phi(\vektor{0\\1\\0}) = [\vektor{0\\1\\0}] = \vektor{0\\1\\0} + U = \{\vektor{0\\1\\0} + \lambda*\vektor{1\\0\\2},\lambda\in\IQ\}.[/mm]
> Da hast du dich wohl verrechnet? Das
> stimmt jedenfalls nicht. Du suchst
> [mm]\lambda_1,\lambda_2\in\IQ[/mm] mit [mm][\vektor{2\\2\\-2}] = \lambda_1[\vektor{1\\0\\0}] + \lambda_2[\vektor{0\\1\\0}]=[\vektor{\lambda_1\\\lambda_2\\0}][/mm],
> d.h. [mm]\vektor{\lambda_1\\\lambda_2\\0}-\vektor{2\\2\\-2}\in U[/mm],
> d.h. ex. [mm]\lambda\in\IQ[/mm] mit
> [mm]\lambda\vektor{1\\0\\2}=\vektor{\lambda_1\\\lambda_2\\0}-\vektor{2\\2\\-2}[/mm].
> Findest du nun solche [mm]\lambda_1,\lambda_2[/mm]?
Ja , ich hoffe doch.
Ich hatte vergessen (bzw. nicht bemerkt), dass dieses [mm] \lambda [/mm] bei dir oben für beide [] dasselbe sein muss.
Nun muss ja [mm] \lambda_{2} [/mm] = 2 sein, [mm] \lambda [/mm] = 1 folgt dann und zuletzt [mm] \lambda_{1} [/mm] = 3.
Okay?
Danke!
Grüße,
Stefan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:18 Fr 12.02.2010 | Autor: | tobit09 |
> > Findest du nun solche [mm]\lambda_1,\lambda_2[/mm]?
>
> Ja , ich hoffe doch.
> Ich hatte vergessen (bzw. nicht bemerkt), dass dieses
> [mm]\lambda[/mm] bei dir oben für beide [] dasselbe sein muss.
> Nun muss ja [mm]\lambda_{2}[/mm] = 2 sein, [mm]\lambda[/mm] = 1 folgt dann
> und zuletzt [mm]\lambda_{1}[/mm] = 3.
Alles bestens!
|
|
|
|
|
Dann danke dir!
Grüße,
Stefan
|
|
|
|