www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Anfänger
Status: (Frage) beantwortet Status 
Datum: 00:09 Do 29.03.2007
Autor: bpo

Aufgabe
Die Modellierung eines betriebswirtschaftlichen Optimierungsproblems führt auf die Funktion [mm] f:\IR^2\to\IR [/mm] mit der Abbildungsvorschrift

[mm] f(x,y)=e^{-xy} [/mm]

Untersuchen Sie die Funktion auf lokale Extrema  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hab da leider keinen Anstazpunkt wäre sehr löblich wenn ich einige Tipps bekäme.
Ich bin wirklich blutiger Anfänger in dieser Materie.
Ich wäre euch auch noch sehr dankbar wenn Ihr mir sagen könntet ob diese Aufgabe zu den schwierigeren zählt.

Mit freundlichen Grüßen

Rüdiger Falk

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertaufgabe: Ansatz
Status: (Antwort) fertig Status 
Datum: 01:21 Do 29.03.2007
Autor: nsche

damit ein relative Extremum vorliegt müssen die partiellen Ableitungen 1. Ordnung verschwinden

[mm] \bruch{\partial}{\partial x} e^{-xy} = 0 [/mm]
und
[mm] \bruch{\partial}{\partial y} e^{-xy} = 0 [/mm]

Wenn du  Nullstellen [mm] x_{0}, y_{0} [/mm] hast  brauchst du noch die  Ableitungen 2.Ordnung mit der Bedingung:
[mm] \bruch{\partial}{\partial xx} e^{-x_{0}y_{0}} * \bruch{\partial}{\partial yy} e^{-x_{0}y_{0}} - \bruch{\partial}{\partial xy}^{2} e^{-x_{0}y_{0}} >0 [/mm]

ein Minimum liegt vor wenn
[mm] \bruch{\partial}{\partial xx} e^{-x_{0}y_{0}} > 0 [/mm]

ein Maximum liegt vor wenn
[mm] \bruch{\partial}{\partial xx} e^{-x_{0}y_{0}} < 0 [/mm]

vG
Norbert



Bezug
                
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:56 Fr 06.04.2007
Autor: bpo

Nach langem hin und her habe ich endlich eine Lösung parat.


Link: http://www.pictureupload.de/pictures/060407140909_img001.jpg  

Wie würdet Ihr die Aufgabe vom schwierigkeitsgrad einschätzen ?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]