www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:34 Mo 04.05.2015
Autor: Ferdie

Aufgabe
Der zeitliche Verlauf der Kondensatorspannung U(t) bei einem Auf- und Entladevorgang eines Kondensators an einer Gleichspannungsquelle über einen konstanten Widerstand kann näherungsweise durch
U(t)= k* e^-t * (1- e^-t) mit t>=0 beschrieben werden. Bestimmen sie den Zeitpunkt an dem die Spannung maximal ist

Um den Extrempunkt zu bestimmen muss ich die Ableitung von U(t) bilden und gleich null setzen.

Mit Hilfe der Produktregel ergibt sich:

U'(t) = vu'+ uv'

        =  k*e^-t * t * e^-t  +  -tk e^-t * (1-e^-t)

Stimmt das?
Und wie kann ich das weiter vereinfachen?
Stehe gerade irgendwie auf dem Schlauch



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt



        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Mo 04.05.2015
Autor: fred97


> Der zeitliche Verlauf der Kondensatorspannung U(t) bei
> einem Auf- und Entladevorgang eines Kondensators an einer
> Gleichspannungsquelle über einen konstanten Widerstand
> kann näherungsweise durch
>  U(t)= k* e^-t * (1- e^-t) mit t>=0 beschrieben werden.
> Bestimmen sie den Zeitpunkt an dem die Spannung maximal
> ist
>  Um den Extrempunkt zu bestimmen muss ich die Ableitung von
> U(t) bilden und gleich null setzen.
>  
> Mit Hilfe der Produktregel ergibt sich:
>  
> U'(t) = vu'+ uv'
>  
> =  k*e^-t * t * e^-t  +  -tk e^-t * (1-e^-t)
>  
> Stimmt das?

Nein. Die Ableitung von [mm] e^{-t} [/mm] ist gegeben durch $- [mm] e^{-t}$ [/mm]


FRED

>  Und wie kann ich das weiter vereinfachen?
>  Stehe gerade irgendwie auf dem Schlauch
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
>  


Bezug
                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Mo 04.05.2015
Autor: Ferdie

Also lautet die Ableitung dann

k*e^-t * -t * e^-t  +  -tk e^-t * (1-e^-t) ?

Bezug
                        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mo 04.05.2015
Autor: Marcel

Hallo,

> Also lautet die Ableitung dann
>  
> k*e^-t * -t * e^-t  +  -tk e^-t * (1-e^-t) ?

bitte nicht nur Brocken hinwerfen - und man schreibt auch nicht ...+ -t..., sondern
...+ (-t)...: Es war

    $U(t)= k* [mm] e^{-t} [/mm] * (1- [mm] e^{-t})$, [/mm]

dann ist

    [mm] $dU(t)/dt\;=\;k*(-1)*e^{-t}*(1-e^{-t})+k*e^{-t}*(-(-1)*e^{-t})$ [/mm]

    [mm] $=-ke^{-t}+ke^{-2t}+ke^{-2t}=ke^{-2t}*(2-e^{t})$ [/mm]

Vgl. auch []Wolframalpha

Zum weiteren Vorgehen: Es wird wohl sinnvoll sein, $k [mm] \neq [/mm] 0$ anzunehmen. Dann
ist

    [mm] $U\,'(t)=0$ [/mm]

genau dann, wenn

    [mm] ($ke^{-2t}=0$ [/mm] oder [mm] $2-e^{t}=0$). [/mm]

Da für $k [mm] \neq [/mm] 0$ aber durchweg [mm] $ke^{-2t} \neq 0\,$ [/mm] ist...

P.S. Denke dran, dass Du auch noch nachweisen musst, dass die potentielle
Extremstelle wirklich eine ist, und dass die Funktion dort auch ihr Maximum
annimmt!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]