www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Extremwert + Integral
Extremwert + Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert + Integral: Zielfunktion
Status: (Frage) beantwortet Status 
Datum: 14:01 Mi 24.01.2007
Autor: kathi1234

Aufgabe
gegeben:
Funktion: f(x)= x²*e^-x
Dreieck: A(0/0); B(x/x²*e^-x); C(x/0)

Aufgabe: Wo muss C liegen, damit das Dreieck ABC eine maximale Fläche hat? ( Strecke AB liegt ggf. zum Teil über dem Graphen!)  

Ich weiß nicht wie man bei dieser Aufgabe auf eine Zielfunktion kommt.
Wer eine Idee hat meldet sich bitte.

Wär lieb, wenn mir wer helfen könnte, die Aufgabe zu lösen.

mfg kathi

        
Bezug
Extremwert + Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Mi 24.01.2007
Autor: statler

Mahlzeit Kathi!

> gegeben:
>  Funktion: f(x)= x²*e^-x
> Dreieck: A(0/0); B(x/x²*e^-x); C(x/0)
>
> Aufgabe: Wo muss C liegen, damit das Dreieck ABC eine
> maximale Fläche hat? ( Strecke AB liegt ggf. zum Teil über
> dem Graphen!)
> Ich weiß nicht wie man bei dieser Aufgabe auf eine
> Zielfunktion kommt.
>  Wer eine Idee hat meldet sich bitte.

Mir kommt da die Idee, daß der Flächeninhalt die Zielfunktion ist, und weil das ein rechtwinkliges Dreieck ist, kann man den ganz leicht als Funktion von x hinschreiben (halbes Produkt aus den beiden Katheten).

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]