Extremum-Nebenbedingung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 13:31 Do 20.05.2010 | Autor: | Limaros |
Aufgabe | Sei [mm] f:\IR^n\to\IR [/mm] gegeben mit [mm] f(x)=\parallel x\parallel^2_2. [/mm] Bestimmen Sie Maximum und Minimun von f auf der Menge M={x [mm] \in \IR^n [/mm] | [mm] \parallel [/mm] x-a [mm] \parallel^2_2 [/mm] = [mm] R^2 [/mm] } (mit a [mm] \in \IR [/mm] ohne 0 und R>0) mithilfe des Satzes von Lagrange. |
Also erstmal habe ich da ein bißchen geometrisch drüber nachgedacht. Die gegebene Menge beschreibt so eine Art allgemeiner Kreis/Sphäre. Insofern sollte f sein Minimum dort annehmen, wo M am nächsten an den Nullpunkt rankommt, und sein Maximum dort haben, wo M den größten Abstand vom Nullpunkt hat. Nützt natürlich zum Rechnen nix, aber stimmt dieser erste Gedanke?
Jetzt zum Rechnen: Es geht ja um eine Extremwertbestimmung mit Nebenbedingung, die Nebenbedingung g lautet [mm] g(x)=\parallel [/mm] x-a [mm] \parallel^2_2 [/mm] - [mm] R^2 [/mm] =0 Richtig?
Dann stelle ich n+1 Gleichungen auf:
[mm] D_i f(c)=\lambda D_i [/mm] g(c) für 1 [mm] \le [/mm] i [mm] \le [/mm] n und
g(c)=0
Also:
2 [mm] c_i [/mm] = [mm] \lambda 2(c_i-a_i) [/mm] für 1 [mm] \le [/mm] i [mm] \le [/mm] n und
[mm] \parallel [/mm] c-a [mm] \parallel^2_2 [/mm] - [mm] R^2 [/mm] =0
Das sollte man jetzt nach [mm] \lambda [/mm] und nach den [mm] c_i [/mm] auflösen können, aber da komme ich nicht weiter. Hat jemand eine Idee, oder ist da schon vorher ein Fehler drin? Besten Dank...
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:01 Fr 21.05.2010 | Autor: | Limaros |
Nachdem ich nochmal drüber nachgedacht habe, denke ich, daß ich eine brauchbare Lösung habe, also ziehe ich die Frage hiermit zurück.
Danke trotzdem!!
|
|
|
|