www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Extrema von stetiger Funktion
Extrema von stetiger Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema von stetiger Funktion: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 22:28 So 20.01.2013
Autor: Supremum

Aufgabe
Sei [mm] f:[0,\infty) [/mm] -> [mm] \IR [/mm] eine stetige Funktion, welche [mm] \forall\varepsilon >0\exists [/mm] c>0 [mm] \forall [/mm] x>c: |f(x)| < [mm] \varepsilon [/mm] erfüllt.
Zeige das f mindestens ein Maxium oder Minimum besitzt.

Hallo,
Ich sitze nun schon eine Weile vor dieser Aufgabe und zerbreche mir den Kopf wie ich hier am besten Anfange?
Es geht hier ja um ein globales Maximum.
Ich hoffe es kann mir jemand ein Tipp geben.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Vielen Dank,
Supremum

        
Bezug
Extrema von stetiger Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 So 20.01.2013
Autor: Rubikon

Hallo Supremum,

dein Name passt denke ich sehr gut zur Aufgabe ;). Stell dir mal die Frage ob die Funktion (oder besser gesagt das Bild der Funktion) ein Supremum/Infimum besitzt.

Wenn du dann noch zeigen kannst, dass dieses Supremum/Infimum ein Element vom Bild ist, dann ist das Supremum/Infimum zugleich das Maximum/Minimum und die Aufgabe ist gelöst. Um den letzten Schritt zu zeigen hilft denke ich der Zwischenwertsatz über stetige Funktionen weiter.

Gruß Rubikon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]