www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Existenz v. Grenzwerten
Existenz v. Grenzwerten < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz v. Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 So 09.01.2005
Autor: bini

Hallo!

Habe ein Problem mit folgender Aufgabe:
Sei:[0,1] [mm] \to \IR [/mm] monoton wachsend. Beweisen Sie
a) für alle a [mm] \in [/mm] [0,1) exsistiert f(a+):= lim(x [mm] \to [/mm] a+)  f(x); für alle [mm] a\in(0,1] [/mm] existiert f(a-):= lim (x [mm] \to [/mm] a-) f(x)
b) für alle [mm] a\in [/mm] [0,1] gilt: f ist genau dann unstetig in a, wenn a Sprungstelle von f ist, d.h. f(a-)   [mm] \not= [/mm] f(a+) bzw. f(0) [mm] \not= [/mm] f(0+) für a=0 bzw. f(1-) [mm] \not= [/mm] f(1) für a=1

Kann irgendwie nichts anfangen mit a+ bzw a-. Wäre also sehr dankbar über einen Ansatz.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Existenz v. Grenzwerten: Hilfestellung
Status: (Antwort) fertig Status 
Datum: 17:51 So 09.01.2005
Autor: Clemens

Hallo bini!

> Habe ein Problem mit folgender Aufgabe:
>  Sei:[0,1] [mm]\to \IR[/mm] monoton wachsend. Beweisen Sie
>  a) für alle a [mm]\in[/mm] [0,1) exsistiert f(a+):= lim(x [mm]\to[/mm] a+)  
> f(x); für alle [mm]a\in(0,1][/mm] existiert f(a-):= lim (x [mm]\to[/mm] a-)
> f(x)
>  b) für alle [mm]a\in[/mm] [0,1] gilt: f ist genau dann unstetig in
> a, wenn a Sprungstelle von f ist, d.h. f(a-)   [mm]\not=[/mm] f(a+)
> bzw. f(0) [mm]\not=[/mm] f(0+) für a=0 bzw. f(1-) [mm]\not=[/mm] f(1) für
> a=1
>  
> Kann irgendwie nichts anfangen mit a+ bzw a-. Wäre also
> sehr dankbar über einen Ansatz.

Du kennst ja sicherlich die Definition des Ausdruckes

[mm] \limes_{x\rightarrow a}f(x) [/mm]

Er wird entweder über die [mm]\varepsilon[/mm]-Methode oder über konvergente Folgen [mm] (x_{n})_{n \in \IN} [/mm] mit Grenzwert a definiert.

Die Ausdrücke

[mm] \limes_{x\rightarrow a+}f(x) [/mm]

und

[mm] \limes_{x\rightarrow a-}f(x) [/mm]

bedeuten einfach, dass bei der [mm]\varepsilon[/mm]-Methode oder bei den Folgen nur x-Werte größer a beziehungweise kleiner a betrachtet werden.

Hier noch ein Tipp:
Denke über Existenz und Bedeutung der Zahlen
[mm]sup(\left{f(x): x < a\right}) [/mm] und
[mm]inf(\left{f(x): x > a\right}) [/mm]
nach.

Gruß Clemens

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]