Erzeugung einer sym. Gruppe < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 15:39 Di 04.11.2008 | Autor: | schnuri |
Aufgabe | Sei X eine endliche Menge mit $ n [mm] \in \IN [/mm] $ Elementen, wobei n >= 2, und S(X) die symmetrische Gruppe über X
Für $ x,y [mm] \in [/mm] X $ mit $ [mm] x\not=y [/mm] $ heisst die Abbildung $ [mm] \sigma_{x,y}: [/mm] X [mm] \to [/mm] X $ die durch
$ [mm] \sigma_{x,y}(x)=y, [/mm] \ \ [mm] \sigma_{x,y}(y)=x [/mm] \ \ [mm] \mbox{und} [/mm] \ \ [mm] \forall [/mm] z [mm] \in X\backslash \{x,y\}: \sigma_{x,y}(z) [/mm] = z $
charakterisiert ist, die _Transposition_ von x und y
Aufgabe: Man beweise: Es gilt $ [mm] \sigma_{x,y} \in [/mm] S(X) $, und die $ [mm] \sigma_{x,y} [/mm] \ [mm] \mbox{erzeugen} [/mm] \ S(X) $. Das letztere soll heissen: zu jedem $ [mm] \sigma \in [/mm] S(X) $ gibt es $ m [mm] \in [/mm] M \ [mm] \mbox{und} [/mm] \ [mm] x_1,...,x_m, [/mm] \ [mm] y_1,...,y_m \in [/mm] X \ [mm] \mbox{mit} [/mm] \ [mm] x_k \not= y_k [/mm] $ für alle $ k [mm] \in \{1,...,m\} [/mm] $, so dass
$ [mm] \sigma [/mm] = [mm] \sigma_{x_1,y_1} \circ [/mm] ... [mm] \circ \sigma_{x_m,y_m} [/mm] $
gilt.
Tipp: Vollständige Induktion nach n |
Hallo Zusammen!
ich hoffe ihr könnt mir einen Hinweis zur Lösung der gestellten Aufgabe geben. Ich glaube die Aufgabenstellung verstanden zu haben und mir scheint die Korrektheit trivial, nur wie beweist man es nachvollziehbar?
Aus der Vorlesung wissen wir, dass S(X) genau n! Elemente besitzt und für n<=2 eine abelsche Gruppe ist. Das ist hier aber, glaube ich, nicht hilfreich.
Wenn ich das richtig verstanden habe, beinhaltet die Symmetrische Gruppe alle möglichen, bijektiven Abbildungen von X->X
D.h. für alle $ [mm] \sigma \in [/mm] S(X) $ muss gelten:
1) $ [mm] \sigma: [/mm] X [mm] \to [/mm] X $
2) $ [mm] \sigma [/mm] $ ist bijektiv
Somit vertauscht jede Abbildung in dieser Gruppe die Reihenfolge der Elemente in X (bis auf die Abbildung, die als neutrales Element gilt. Die bildet wieder auf die selbe Reihenfolge ab)
Dabei vertauscht die Abbildung $ [mm] \sigma_{x,y} [/mm] $ genau zwei Elemente und belässt den Rest an der gleichen Stelle.
Das würde doch bedeuten, dass ich für die vollständige Induktion für jeden Schritt zeigen muss, dass 1) und 2) für die Abbildung gelten. Damit würde sich die Abbildung für die symmetrische Gruppe qualifizieren.
Also Induktionsanfang: n = 2
$ [mm] \sigma: [/mm] X [mm] \to [/mm] Y, \ [mm] \vektor{x_1 \\ x_2} \mapsto \vektor{x_2 \\ x_1} [/mm] $
zu 1) Menge X = Menge Y, somit $ [mm] \sigma: [/mm] X [mm] \to [/mm] X $
zu 2) Jedes Bild hat genau ein Urbild => injektiv, Zielmenge wird komplett getroffen => surjektiv, injektiv und surjektiv => bijektiv
Geht das so?
Induktionsschritt: $ n [mm] \mapsto [/mm] n+1 $
$ [mm] \sigma: [/mm] X [mm] \to [/mm] Y, \ [mm] \vektor{x_1 \\ ... \\ x_i \\ x_j \\ ... \\ x_n } \mapsto \vektor{x_1 \\ ... \\ x_j \\ x_i \\ ... \\ x_n } [/mm] $ mit 1 <= i,j <= n, $ i [mm] \not= [/mm] j $
Mit i und j habe ich versucht anzudeuten, dass beliebige zwei Elemente aus der Menge vertauscht werden können, nicht nur die ersten beiden.
zu 1) Menge X = Menge Y, somit $ [mm] \sigma: [/mm] X [mm] \to [/mm] X $, bleibt wie oben
zu 2) Jedes Bild hat genau ein Urbild => injektiv, Zielmenge wird komplett getroffen => surjektiv, injektiv und surjektiv => bijektiv
Daraus folgt, dass $ [mm] \sigma_{x,y} \in [/mm] S(X) $? Geht das?
Dass die Abbildungen den ganzen S(X) erzeugen ist mir auch total klar: Ich kann viele Sigmas, die jeweils nur zwei Elemente vertauschen, hintereinander schalten, sodass sich eine beliebige Rekombination ergeben kann. Sich damit auch jede Abbildung aus S(X) konstruieren lässt. Aber keine Ahnung, wie man das notieren kann!
Ich wäre für einen Tipp sehr dankbar!
Viele Grüße,
schnuri
Ich habe diese Aufgabe in keinem anderen Forum gepostet
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Fr 07.11.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|