www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Do 20.11.2014
Autor: zahlenfreund

Aufgabe
Sei (Ω, E, P) ein Wahrscheinlichkeitsraum und X : Ω → N eine diskrete Zufallsvariable. Zeigen Sie:
a) E(X) = [mm] \summe_{n=1}^{\infty}P(X [/mm] ≥ n)

[mm] b)E(X^{2}) [/mm] = [mm] \summe_{n=1}^{\infty} [/mm] (2n-1) P(X ≥ n)

Hallo Leute

Ich weiß, was der Erwartungswert und eine Zufallsvariable ist, aber ich verstehe den Ausdruck nicht ganz und was genau ich zeigen muss.


Gruß zahlenfreund

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Do 20.11.2014
Autor: DieAcht

Hallo Zahlenfreund,


> Sei (Ω, E, P) ein Wahrscheinlichkeitsraum und X : Ω → N eine diskrete Zufallsvariable.

Du meinst:

      [mm] X\colon\Omega\to\IN. [/mm]

> Zeigen Sie:
> a) E(X) = [mm]\summe_{n=1}^{\infty}P(X[/mm] ≥ n)

> Ich weiß, was der Erwartungswert und eine Zufallsvariable ist,

Ich nehme an, dass ihr den endlichen Erwartungswert für reell-
wertige Zufallsvariablen über Reihen definiert habt. Schreibe
uns doch bitte eure genaue Definition auf.

> aber ich verstehe den Ausdruck nicht ganz und was genau ich zeigen muss.

Das Resultat der ersten Aussage ist, dass der Erwartungswert
einer [mm] $\IN$-wertigen [/mm] Zufallsvariable [mm] $X\$ [/mm] gegeben ist durch

      [mm] $\mathbb{E}(X)=\sum_{n=1}^{\infty}\mathbb{P}(X\ge [/mm] n)$.

(Du kannst dir auch eine Aussage über [mm] $\IN_0$-wertige [/mm] Zufalls-
variablen überlegen.)

Ein möglicher Ansatz für den Beweis der Aussage ist

      [mm] $\sum_{n=1}^{\infty}\mathbb{P}(X\ge n)=\sum_{n=1}^{\infty}\sum_{l=n}^{\infty}\mathbb{P}(X=l)$. [/mm]

Jetzt bist du dran! Begründe die Gleichheit und probiere damit
auf eure Definition des Erwartungswerts zu kommen.


Gruß
DieAcht

Bezug
                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Do 20.11.2014
Autor: zahlenfreund

Erwartungswert:  [mm] \summe_{\alpha \in Ω}X(\alpha)P(\alpha) [/mm] (Im Index soll Alpha Element Ω stehen)


E(x)= [mm] \summe_{n=1}^{\infty} [/mm] n*(x=n) (nach Def. vom Erwartungswert)

[mm] \summe_{n=1}^{\infty}P(X [/mm] ≥ n)= P(x=n)+P(x=n+1)+P(x=n+2)....
  
daran erkennt man die Gleichheit. Ist das soweit richtig ?


Bezug
                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Do 20.11.2014
Autor: DieAcht


> Erwartungswert:  [mm]\summe_{\alpha \in Ω}X(\alpha)P(\alpha)[/mm]
> (Im Index soll Alpha Element Ω stehen)

Das ist nur dann wahr, wenn die Reihe

      [mm] \sum_{\alpha\in\Omega}p(\alpha)|X(\alpha)| [/mm]

konvergiert. Du findest aber mit Sicherheit unter den Eigen-
schaften des Erwartungswertes, dass die Zufallsvariable [mm] $X\$ [/mm]
genau dann einen Erwartungswert besitzt, falls die Reihe

      [mm] \sum_{\alpha\in X(\Omega)}|\alpha|\mathbb{P}(X=\alpha) [/mm]

konvergiert. Dann setzen wir

      [mm] \mathbb{E}(X)=\sum_{\alpha\in X(\Omega)}\alpha*\mathbb{P}(X=\alpha). [/mm]

(Ist dir klar weshalb die Reihe konvergieren muss?)

> E(x)= [mm]\summe_{n=1}^{\infty}[/mm] n*(x=n) (nach Def. vom Erwartungswert)

Du meinst:

      [mm] \mathbb{E}(X)=\summe_{n=1}^{\infty}n*\mathbb{P}(X=n). [/mm]

Das ist der Erwartungswert für [mm] $\IN$-wertige [/mm] Zufallsvariablen,
falls dieser existiert. Du hast aber Recht, denn genau darauf
wollen wir hinaus.
  

> [mm]\summe_{n=1}^{\infty}P(X[/mm] ≥ n)=P(x=n)+P(x=n+1)+P(x=n+2)....
> daran erkennt man die Gleichheit. Ist das soweit richtig ?

Wir brauchen eine Begründung für

      [mm] $\sum_{n=1}^{\infty}\mathbb{P}(X\ge n)=\sum_{n=1}^{\infty}\sum_{l=n}^{\infty}\mathbb{P}(X=l)$, [/mm]

also eine Begründung für

      [mm] \mathbb{P}(X\ge n)=\sum_{l=n}^{\infty}\mathbb{P}(X=l). [/mm]

Es ist

      $ [mm] \mathbb{P}\left(X \ge n\right) [/mm] = [mm] \mathbb{P}\left(X \in \{n,n+1,n+2,\ldots\}\right) [/mm] = [mm] \mathbb{P}\left(X \in \{n\} \cup X \in \{n+1\} \cup X \in \{n+2\} \cup \ldots\right) [/mm] $.

Jetzt wieder du!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]