www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Eigenwerte zu einer Matrix
Eigenwerte zu einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte zu einer Matrix: Durch Transformation anders?
Status: (Frage) beantwortet Status 
Datum: 20:40 Fr 08.07.2011
Autor: zoj

Aufgabe
Gegeben:
[mm] \pmat{ 0 & -1 & -2 \\ -1 & 0 & -2 \\ -2 & -2 & -3} [/mm]

Bestimmen Sie alle Eigenwerte und geben Sie eine Basis der Eigenräume an.

Bei meiner Frage geht es um die Eigenwerte:

Normalerweise muss man das Charakteristische-Polinom aufstellen und durch die Determinante die Eigenwerte bestimmen.

Bei manchen 3x3 Matrizen kann das schon kompliziert werden.
Dann habe ich mir überlegt die Matrix erstmal auf Zeilenstufenform zu bringen. Dann stehen ja die Eigenwerte auf der Hauptdiagonalen.

Das Problem ist jetzt, dass ich andere Eigenwerte rausbekomme, als in der Musterlösung.

Heißt es, dass durch die Umformung der Matrix sich die Eigenwerte ändern?

Die umgeformte Matrix lautet bei mir:
[mm] \pmat{ -2 & -2 & -3 \\ 0 & -1 & -16 \\ 0 & 0 & 0} [/mm]
Eigenwerte(umgeformte Matrix): [mm] \lambda_{1}=-2 [/mm] , [mm] \lambda_{2}=-1, \lambda_{3}=0 [/mm]

In der Musterlösung kommen folgende Eigenwerte raus:
Eigenwerte(Musterlösung): [mm] \lambda_{1}=1 [/mm] , [mm] \lambda_{2}=1, \lambda_{3}=5 [/mm]


        
Bezug
Eigenwerte zu einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Fr 08.07.2011
Autor: Applepie

Ja, die Eigenwerte einer Matrix ändern sich, wenn du sie vorher auf Zeilen/Stufenform bringst.
Also lieber klassisch die Eigenwerte berechnen, vielleicht hilft dir aber entwickeln nach einer Zeile bzw. Spalte dann weiter, dann muss man später das Polynom nicht mehr umständlich durch Nullstellensuche umformen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]