Ebenengleichung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:40 Mi 30.01.2013 | Autor: | uli001 |
Aufgabe 1 | Wie lautet die Gleichung der Ebene e, die den Punkt A(1/1/1) und die Gerade
g: [mm] \overrightarrow{x} [/mm] = [mm] \vektor{1 \\ 0 \\ 0} [/mm] + [mm] \lambda \vektor{2 \\ 1 \\ 0}
[/mm]
enthält? |
Aufgabe 2 | Wie lautet die Ebenengleichung, die durch die drei Punkte A(1/0/2), B(3/3/3) und R(-4/1/0) geht. Liegt der Punkt S(1/1/1) auf der Ebene? |
Aufgabe 3 | Liegt der Nullpunkt in der Ebene Dreiecks ABC mit A(1/-3/2), B(4/-3/2), C(3/0/2)? |
Hallo zusammen,
ich weiß nicht was ich davon halten soll und hoffe sehr, hier kann mir wieder einmal jemand helfen. Ich habe die zweite und dritte Aufgabe gelöst (bei der ersten war ich von Anfang an ratlos...). Ich komme zwar zu dem gleichen Ergebniss, nämlich dass der Punkt S in Aufgabe 2 und der Nullpunkt in Aufgabe 3 nicht auf den jeweiligen Ebenen liegen, jedoch werden in allen drei Aufgaben in den Lösungen ANDERE Zahlen angegeben. Das kann kein Zufall sein, ich weiß allerdings absolut nicht warum das so ist.
In Aufgabe 1 lautet die Lösung:
e: [mm] \overrightarrow{x} [/mm] = [mm] \vektor{1 \\ 0 \\ 0} [/mm] + [mm] \lambda \vektor{2 \\ 1 \\ 0} [/mm] + [mm] \mu \vektor{0 \\ 1 \\ 1}
[/mm]
Warum hat hier der letzte Vektor bei [mm] \mu [/mm] nicht die Werte (1/1/1) sondern (0/1/1)???
In Aufgabe 2 habe ich als Ebenengleichung
e: [mm] \overrightarrow{x} [/mm] = [mm] \vektor{1 \\ 0 \\ -2} [/mm] + [mm] \lambda \vektor{3 \\ 3 \\ 3} [/mm] + [mm] \mu \vektor{-4 \\ 1 \\ 0}
[/mm]
die Lösung besagt aber
e: [mm] \overrightarrow{x} [/mm] = [mm] \vektor{1 \\ 0 \\ 2} [/mm] + [mm] \lambda \vektor{2 \\ 3 \\ 1} [/mm] + [mm] \mu \vektor{-5 \\ 1 \\ -2}
[/mm]
Warum sind die Werte anders? Ich komme nicht dahinter...
In Aufgabe 3 ist es das Gleiche, ich habe
e: [mm] \overrightarrow{x} [/mm] = [mm] \vektor{1 \\ -3 \\ 2} [/mm] + [mm] \lambda \vektor{4 \\ -3 \\ 2} [/mm] + [mm] \mu \vektor{3 \\ 0 \\ 2}
[/mm]
die Lösung im Buch lautet
e: [mm] \overrightarrow{x} [/mm] = [mm] \vektor{1 \\ -3 \\ 2} [/mm] + [mm] \lambda \vektor{3 \\ 0 \\ 0} [/mm] + [mm] \mu \vektor{2 \\ 3 \\ 0}
[/mm]
Auch hier sind die Werte anders...
Ich würde mich sehr freuen, wenn sich hier jemand kurz meinem Problem annehmen könnte und mir erklären könnte, warum bei allen drei Aufgaben die Zahlen anders sind...
Herzlichen Dank im Voraus!
PS: Ich habe diese Frage in keinem anderen Forum gestellt.
|
|
|
|
Hallo Uli!
> In Aufgabe 1 lautet die Lösung: e: [mm]\overrightarrow{x}[/mm] = [mm]\vektor{1 \\ 0 \\ 0}[/mm] + [mm]\lambda \vektor{2 \\ 1 \\ 0}[/mm] + [mm]\mu \vektor{0 \\ 1 \\ 1}[/mm]
> Warum hat hier der letzte Vektor bei [mm]\mu[/mm] nicht die Werte (1/1/1) sondern (0/1/1)???
Weil die Richtungsvektoren einer Ebene als Differenz zwischen dem Stützpunkt (auch "Aufpunkt") zu den genannten Punkten der Ebene spannen.
Das bedeutet bei Dir:
[mm] $\vec{r}_2 [/mm] \ = \ [mm] \overrightarrow{PA} [/mm] \ = \ [mm] \overrightarrow{OA}-\overrightarrow{OP} [/mm] \ = \ [mm] \vec{a}-\vec{p} [/mm] \ = \ [mm] \vektor{1\\1\\1}-\vektor{1\\0\\0} [/mm] \ = \ [mm] \vektor{0\\1\\1}$
[/mm]
Am besten solltest Du Dir das auch mal aufskizzieren.
Gruß vom
Roadrunner
|
|
|
|
|
Hallo Uli!
Auch hier machst Du denselben Fehler wie bei Aufgabe 1. Siehe also die Antwort oben.
Du musst für die Richtungsvektoren der Ebene jeweils die Differenz zwischen Punkt der Ebene und dem Stützpunkt bilden.
Gruß vom
Roadrunner
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:06 Mi 30.01.2013 | Autor: | uli001 |
Hi roadrunner,
schonmal ganz herzlichen Dank für deine Hilfe. Bei der ersten Aufgabe kann ich das soweit nachvollziehen und könnte das auch auf ähnliche Aufgaben übertragen. Worüber ich allerdings bei der 2. und 3. Aufgabe noch stolpere ich die Tatsache, dass ich ja nur Punkte und keine Geraden angegeben habe... Woher weiß ich denn jeweils, was der "Stützpunkt" (hör ich jetzt zum ersten Mal) ist und was ich jeweils voneinander subtrahieren muss?
MfG
|
|
|
|
|
Hallo,
jeder Punkt, der auf der Ebene liegt, kann als Stützpunkt bzw. Stützvektor verwendet werden. Gebräuchlich ist auch der Begriff Aufsprungvektor bzw. Aufsprungpunkt, vielleicht hattet ihr das so genannt?
Subtrahieren musst du, um Vektoren zu bekommen, die in der Ebene verlaufen und damit ihre Richtung beschreiben. Eine Ebene hat 2 Dimensionen, folglich benötigst du zwei solche Richtungsvektoren bzw. auch oft Spannvektoren genannt. Und: diese beiden Vektoren müssen linear unabhängig sein, d.h., sie dürfen nicht parallel und damit kein Vielfaches voneinander sein.
Gruß, Diophant
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:13 Mi 30.01.2013 | Autor: | uli001 |
Ja das leuchtet mir ein... Werde mal versuchen, das so auf andere Aufgaben anzuwenden.
Herzlichen Dank euch beiden!!!!!!!!!!!!!!1
|
|
|
|