www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Divergenz
Divergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:02 So 28.11.2004
Autor: mario.braumueller

Hallo,

ich hätte da mal ne Frage: Ne Lösung wär super, weil ich auch mitm Ansatz nicht weiterkomm:

------------------------------------------------------------------------------

Formulieren sie mit Hilfe der Quantorenschreibweise das Gegenteil der Konvergenzbedingung und zeigen sie damit, dass diese Folgen divergieren:


[mm] x_{n} [/mm] = r [mm] (-1)^{n} [/mm]  mit (r  [mm] \not= [/mm] 0)  ,    [mm] y_{n} [/mm] =  [mm] \bruch{n!}{ 2^{n}} [/mm]



Bitte um Hilfe


Danke im voraus.

        
Bezug
Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 So 28.11.2004
Autor: Clemens

Hallo Mario!

Die Verneinung von solchen komplizierten Aussagen mit Quantoren folgt einem einfachen Schema (Sei P eine Aussage in Abhängigkeit von x):

[mm] \neg \exists x. P(x) \gdw \forall x. \neg P(x)[/mm]
[mm] \neg \forall x. P(x) \gdw \exists x. \neg P(x)[/mm]

Jetzt musst du noch wissen, dass folgende Vereinbarungen gelten (M Menge):

[mm] \forall x \in M. P(x) \gdw \forall x. (x \in M \to P(x))[/mm]
[mm] \exists x \in M. P(x) \gdw \exists x. (x \in M \wedge P(x))[/mm]

Das ist (1. Zeile) folgendermaßen zu interpretieren:
Anstatt zu sagen, dass:
Für alle Elemente von M gilt P(x).
sagt man:
Für alle mathematischen Objekte x gilt, dass sie, wenn sie Elemente von M sind, die Bedingung P(x) erfüllen.

Jetzt schreibe ich nochmal die Konvergenzbedingung für eine Folge auf:
[mm] \exists g \in \IR. \forall \varepsilon \in \IR^{+}. \exists N_{0} \in \IN. \forall n \in (N_{0}, N_{0} + 1, ...). |f(n) - g| < \varepsilon[/mm]
Die Punkte in der Schreibweise heißen immer, dass der Wirkungsbereich des Quantors maximal ist.
Wir verneinen nach den obigen Regeln:
[mm] \neg ( \exists g \in \IR. \forall \varepsilon \in \IR^{+}. \exists N_{0} \in \IN. \forall n \in (N_{0}, N_{0} + 1, ...). |f(n) - g| < \varepsilon)[/mm]
[mm] \gdw \neg ( \exists g.(g \in \IR \wedge( \forall \varepsilon.( \varepsilon \in \IR^{+} \to ( \exists N_{0}.( N_{0} \in \IN \wedge( \forall n.(n \in (N_{0}, N_{0} + 1, ...) \to (|f(n) - g| < \varepsilon)))))))))[/mm]
[mm] \gdw \forall g. \neg (g \in \IR \wedge( \forall \varepsilon.( \varepsilon \in \IR^{+} \to ( \exists N_{0}.( N_{0} \in \IN \wedge( \forall n.(n \in (N_{0}, N_{0} + 1, ...) \to (|f(n) - g| < \varepsilon))))))))[/mm]
Jetzt müssen wir die Tautologie [mm] \neg (A \wedge B) \gdw A \to \neg B [/mm]ausnützen:
[mm] \gdw \forall g.g \in \IR \to \neg ( \forall \varepsilon.( \varepsilon \in \IR^{+} \to ( \exists N_{0}.( N_{0} \in \IN \wedge( \forall n.(n \in (N_{0}, N_{0} + 1, ...) \to (|f(n) - g| < \varepsilon)))))))[/mm]
...
und so geht dass dann immer weiter, bis sich das  [mm] \neg [/mm] durch den ganzen logischen Ausdruck durchgefressen hat. Dann kannst du zur Übersichtlichkeit wieder die abkürzenden Schreibweise einführen. Viel Erfolg! Du kannst Zwischenergebnisse hier posten.

Dass die Folgen divergieren, kannst du bei 1. durch die Fallunterscheidung
g = r oder g = - r oder (g [mm] \not= [/mm] r [mm] \wedge [/mm] g [mm] \not= [/mm] -r)
zeigen und bei 2. durch die Konvergenz gegen unendlich.

Liebe Grüße
Clemens

Bezug
                
Bezug
Divergenz: ???
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 So 28.11.2004
Autor: mario.braumueller

Wenn ich mir das so anschau, dann ist das schon logisch, aber weiter komm ich trotzdem nicht.

Ich bin einfach zu blöd für Mathe.... Naja egal, trotzdem danke für die  Hilfe, muss ich morgen halt dann doch abschreiben :-)

Danke nochmal.

Gruß Mario

Bezug
                        
Bezug
Divergenz: Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:53 So 28.11.2004
Autor: Clemens

Hallo Mario!

Für Mathe ist niemand zu blöd. Man muss aber früh genug anfangen, sich damit auseinanderzusetzen; ansonsten kriegt man Probleme.

Wenn du willst, kannst du zu meiner Antwort eine Frage stellen. Ich kann sie heute nicht mehr beantworten, aber vielleicht jemand anderes.

Gruß
Clemens

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]