Dimension und BAsis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Eine lineare Abbildung f mit Df=R hoch 4, g=(x1, x2, x3, x4) sei gegeben durch F(g)= x1 * (..) +x2*().....
bestimmen sie dim (Bildf) und dim (Kern f) |
HAllo erstmal,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
ich habe diese Frage nicht komplett abgeschrieben, da ich eigentlich nur gerne wüsste, wie ich denn die beiden Dimensionen berechnen muss, quasi eine Anleitung.
ich weiss bereits, dass dim (bildf) die Anzahl der Vektoren in einer BAsisdarstelllung ist mehr aber aich nicht...
desweiteren würde ich gerne wissen, ob mir jemand mal erklären könnte, wie ich die Diemnsion beim Eliminierungsverfahren von GAussch ablesen kann......
es ist wirklich dringend, die KLausur steht ins haus.
danke schon mal im vorraus
lg nina
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:18 Mi 01.02.2006 | Autor: | martin1984 |
Hallo!
Also mir sind deine Begriffe in der Aufgabe nicht klar. Was bedeutet das D z.B.?
Zur Dimension:
Wenn du so etwas berechnen willst, hilft dir oft die Dimensionsformel:
$ [mm] \dim [/mm] V = [mm] \dim \mathrm{Kern}(f) [/mm] + [mm] \dim \mathrm{Bild}(f)$ [/mm]
Falls du mit Dimension bei Gauß die Dim. des Bildraumes meinst:
Die Dim. des Bildes ist der Rang einer Matrix und das ist wiederum die Anzahl der linear unabhängigen Spalten oder Zeilen (Prüfe eins von beiden, welches ist egal).
Und wenn du nun die Dimension deines Vektorraumes weißt, kannst du mit der obigen Dimensionsformel auch die Dim. des Kernes angeben.
Gruß Martin
|
|
|
|