www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Dimension Beweis
Dimension Beweis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension Beweis: Hilfe bei der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:50 Mo 01.06.2015
Autor: rsprsp

Aufgabe
Sei [mm] \IK [/mm] ein Körper und V ein K-Vektorraum der Dimension n. Seien [mm] U_{1}, [/mm] . . . , [mm] U_{k} [/mm] K-Untervektorräume von V mit [mm] dim(U_{i}) [/mm] = n − 1, (i = 1, . . . , k). Beweisen Sie die Ungleichung:

[mm] dim(U_{1} [/mm] ∩ . . . ∩ [mm] U_{k}) [/mm] ≥ n − k.

Kann mir jemand mit dem Beweis helfen bzw. ein Ansatz zeigen ? Danke im voraus.

        
Bezug
Dimension Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Mo 01.06.2015
Autor: tobit09

Hallo rsprsp!


Führe eine Induktion nach k durch.

Im Induktionsschritt kann die Dimensionsformel für Untervektorräume nützlich sein...


Viele Grüße
Tobias

Bezug
                
Bezug
Dimension Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:07 Di 02.06.2015
Autor: rsprsp

Also ich habe
[mm] dim(U_{i}) [/mm] = n-1, {i,...,k} und
[mm] dim(U_{1} [/mm] ∩ . . . ∩ [mm] U_{k}) [/mm] ≥ n − k

i.A. k=1
[mm] dim(U_{1}) [/mm] = n-1 und

[mm] dim(U_{1}) [/mm] ≥ n−1

Wie man sieht sind die Gleichungen identisch.

i.V.
[mm] dim(U_{1} [/mm] ∩ . . . ∩ [mm] U_{k}) [/mm] ≥ n − k
i.S k+1
[mm] dim(U_{1} [/mm] ∩ . . . ∩ [mm] U_{k} [/mm] ∩ [mm] U_{k+1}) [/mm] ≥ n − k + 1 und [mm] dim(U_{i}) [/mm] = n-1, {i,...,k,k+1}


Kannst du mir zeigen wies weiter geht und wie ich die Dimensionsformel anwenden soll ?

Bezug
                        
Bezug
Dimension Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 06:46 Di 02.06.2015
Autor: angela.h.b.


> Also ich habe
>  [mm]dim(U_{i})[/mm] = n-1, {i,...,k} und
>  [mm]dim(U_{1}[/mm] ∩ . . . ∩ [mm]U_{k})[/mm] ≥ n − k
>  
> i.A. k=1
>  [mm]dim(U_{1})[/mm] = n-1 und
>  
> [mm]dim(U_{1})[/mm] ≥ n−1
>
> Wie man sieht sind die Gleichungen identisch.
>  
> i.V.
>  [mm]dim(U_{1}[/mm] ∩ . . . ∩ [mm]U_{k})[/mm] ≥ n − k
>  i.S k+1
>  [mm]dim(U_{1}[/mm] ∩ . . . ∩ [mm]U_{k}[/mm] ∩ [mm]U_{k+1})[/mm] ≥ n − [mm] \red{(}k [/mm] + 1 [mm] \red{)} [/mm]
> und [mm]dim(U_{i})[/mm] = n-1, {i,...,k,k+1}
>  
>
> Kannst du mir zeigen wies weiter geht und wie ich die
> Dimensionsformel anwenden soll ?

Hallo,

beachte die eingefügte Klammer.

Kennst Du denn die Dimensionsformel? Wie lautet sie?
Nimm dann [mm] V_1:=[/mm] [mm](U_{1}[/mm] ∩ . . . ∩ [mm]U_{k}[/mm]) und [mm] V_2:=U_{k+1}. [/mm]

LG Angela


Bezug
                                
Bezug
Dimension Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:55 Di 02.06.2015
Autor: rsprsp

Die Dimensionsformel lautet:

[mm] dim(v_{1}+v_{2}) [/mm] = [mm] dim(v_{1})+dim(v_{2})-dim(v_{1} \cap v_{2}) [/mm]

Also wenn jetzt
[mm] v_{1} [/mm] = [mm] (U_{1} \cap [/mm] ... [mm] \cap U_{k}) [/mm]
[mm] v_{2} [/mm] = [mm] U_{k+1} [/mm]


[mm] dim((U_{1} \cap [/mm] ... [mm] \cap U_{k})+U_{k+1}) [/mm] = [mm] dim(U_{1} \cap [/mm] ... [mm] \cap U_{k}) [/mm] + [mm] dim(U_{k+1}) [/mm] - [mm] dim(U_{1} \cap [/mm] ... [mm] \cap U_{k} \cap U_{k+1}) [/mm]

Ich weiß jetzt, dass
[mm] dim(U_{k+1}) [/mm] = n-1,
da es nach [mm] dim(U_{i}) [/mm] = n-1, i=(1,...,k+1) gelten muss.
Zusätzlich ist:
[mm] dim(U_{1} \cap [/mm] ... [mm] \cap U_{k}) \ge [/mm] n-k

Ich weiß aber nicht womit ich jetzt [mm] dim((U_{1} \cap [/mm] ... [mm] \cap U_{k})+U_{k+1}) [/mm]  oder [mm] dim(U_{1} \cap [/mm] ... [mm] \cap U_{k} \cap U_{k+1}) [/mm] ersetzen soll damit die Ungleichung eindeutig bewiesen ist.
Kannst du weiterhelfen ?

Gruß



Bezug
                                        
Bezug
Dimension Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Di 02.06.2015
Autor: angela.h.b.


> Die Dimensionsformel lautet:
>  
> [mm]dim(v_{1}+v_{2})[/mm] = [mm]dim(v_{1})+dim(v_{2})-dim(v_{1} \cap v_{2})[/mm]
>  
> Also wenn jetzt
>  [mm]v_{1}[/mm] = [mm](U_{1} \cap[/mm] ... [mm]\cap U_{k})[/mm]
>  [mm]v_{2}[/mm] = [mm]U_{k+1}[/mm]
>  
>
> [mm]dim((U_{1} \cap[/mm] ... [mm]\cap U_{k})+U_{k+1})[/mm] = [mm]dim(U_{1} \cap[/mm]
> ... [mm]\cap U_{k})[/mm] + [mm]dim(U_{k+1})[/mm] - [mm]dim(U_{1} \cap[/mm] ... [mm]\cap U_{k} \cap U_{k+1})[/mm]
>  
> Ich weiß jetzt, dass
>  [mm]dim(U_{k+1})[/mm] = n-1,
>  da es nach [mm]dim(U_{i})[/mm] = n-1, i=(1,...,k+1) gelten muss.
>  Zusätzlich ist:
>  [mm]dim(U_{1} \cap[/mm] ... [mm]\cap U_{k}) \ge[/mm] n-k
>  
> Ich weiß aber nicht womit ich jetzt [mm]dim((U_{1} \cap[/mm] ... [mm]\cap U_{k})+U_{k+1})[/mm]  

Hallo,

an dieser Stelle solltest Du ansetzen: überlege Dir, welche Dimensionen für [mm] (U_{1} \cap[/mm] [/mm] ... [mm][mm] \cap U_{k})+U_{k+1} [/mm] überhaupt nur infrage kommen.

LG Angela



> oder [mm]dim(U_{1} \cap[/mm] ... [mm]\cap U_{k} \cap U_{k+1})[/mm]
> ersetzen soll damit die Ungleichung eindeutig bewiesen
> ist.
>  Kannst du weiterhelfen ?
>  
> Gruß
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]