www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Dimension
Dimension < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:47 Mo 21.11.2011
Autor: derahnungslose

Aufgabe
Gegeben seien die Vektoren v1=(3,0,3,6), v2=(2,-1,1,2), v3=(-1,1,0,0), v4=(0,1,2,pi) und v5=(2,1,4,4+pi) [mm] \in \IR^4. [/mm]  Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind und begründen Sie Ihre Antwort.
f) Der Vektorraum L(v1,v2,v3,v4,v5) hat Dimension 3.

Hallo Leute,
ich habe bei der Aufgabe geguckt, wie viele Vektoren linear unabhängig sind. Da bin ich auf 3 gekommen v1,v2 und v4. So nun steht in meinem Skript folgendes:

"Besitzt ein Vektorraum V eine Basis aus n Vektoren, so hat jede Basis genau n Elemente." Das würde doch für mich heißen, dass meine Vektoren 3 Einträge haben müsste, oder??? Das ist ja hier nicht der Fall.

Weiter steht in meinem Skript: "Hat V eine Basis mit n Elementen, so nenne wir n die Dimension von V und schreiben dimV:=n." -Das würde ja bei mir zutreffen und die Aussage wäre war.

Danke

        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mo 21.11.2011
Autor: fred97


> Gegeben seien die Vektoren v1=(3,0,3,6), v2=(2,-1,1,2),
> v3=(-1,1,0,0), v4=(0,1,2,pi) und v5=(2,1,4,4+pi) [mm]\in \IR^4.[/mm]
>  Entscheiden Sie, ob die folgenden Aussagen wahr oder
> falsch sind und begründen Sie Ihre Antwort.
> f) Der Vektorraum L(v1,v2,v3,v4,v5) hat Dimension 3.
>  Hallo Leute,
>  ich habe bei der Aufgabe geguckt, wie viele Vektoren
> linear unabhängig sind. Da bin ich auf 3 gekommen v1,v2
> und v4. So nun steht in meinem Skript folgendes:
>
> "Besitzt ein Vektorraum V eine Basis aus n Vektoren, so hat
> jede Basis genau n Elemente." Das würde doch für mich
> heißen, dass meine Vektoren 3 Einträge haben müsste,
> oder???

Nein. Die Vektoren kommen doch aus dem [mm] \IR^4 [/mm]

> Das ist ja hier nicht der Fall.
>
> Weiter steht in meinem Skript: "Hat V eine Basis mit n
> Elementen, so nenne wir n die Dimension von V und schreiben
> dimV:=n." -Das würde ja bei mir zutreffen und die Aussage
> wäre war.

L(v1,v2,v3,v4,v5) ist ein Untervektorraum des  [mm] \IR^4 [/mm] und es stimmt, dass L(v1,v2,v3,v4,v5) die Dimension 3 hat.

FRED

>  
> Danke


Bezug
                
Bezug
Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Mo 21.11.2011
Autor: derahnungslose

Vielen Dank Fred ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]