www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Differenzieren
Differenzieren < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren: Ableitung x * (x-a)²
Status: (Frage) beantwortet Status 
Datum: 18:01 Sa 26.09.2009
Autor: iamou

Aufgabe
Funktion: fa(x)=(1/2a) * x * (x-a)²

Ich habe mich an der Ableitung versucht. Allerdings fehlt bei meiner Ableitung etwas.

Erste Zeile der Ableitung soll folgendermaßen lauten:

fa'(x)=1/2a * [ 1 * (x-a)² + x * 2 * (x-a) * 1]

Ich habe bei der ersten Zeile unter Anwendung der Produktregel folgendes raus bekommen:

fa'(x)=1/2a * [ 1 * (x-a)² + x * 2 * (x-a) * x ]

Was habe ich falsch gemacht?

        
Bezug
Differenzieren: Egänzung bzw. Verbesserung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Sa 26.09.2009
Autor: iamou

Ich muss mich nochmal verbessern. Bei meienr erten Ableitung habe ich folgendes raus:

fa'(x)=1/2a * [ 1 * (x-a)² + 2 * (x-a) * x ]

Stimmt aber auch nicht :(

Bezug
                
Bezug
Differenzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Sa 26.09.2009
Autor: ChopSuey

Hi,

doch, das stimmt.
Überprüfe das mit der Lösung!

Grüße
ChopSuey

Bezug
        
Bezug
Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Sa 26.09.2009
Autor: ChopSuey

Hallo iamou,

$\ [mm] f_a(x) [/mm] = [mm] \frac{1}{2}ax(x-a)^2 [/mm] $

Produktregel [ok]

Beachte, dass $\ [mm] \frac{1}{2}a [/mm] =  [mm] \frac{a}{2} [/mm]  $ bloß eine multiplikative Konstante ist.

$\ [mm] f_a'(x) [/mm] =  [mm] \frac{a}{2} \left( (x-a)^2+x*2(x-a) \right) [/mm] $

> Ich habe bei der ersten Zeile unter Anwendung der
> Produktregel folgendes raus bekommen:
>  
> fa'(x)=1/2a * [ 1 * (x-a)² + x * 2 * (x-a) * x ]
>  
> Was habe ich falsch gemacht?  

Die Innere Ableitung $\ [mm] (x-a)^2 [/mm] $ stimmt nicht.

Was ist denn die Ableitung von $\ x-a $ ?

Grüße
ChopSuey

Bezug
                
Bezug
Differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Sa 26.09.2009
Autor: iamou

x-a ist abgeleitet 1, da das a ja wie eine Zahl behandelt wird oder?

Bezug
                        
Bezug
Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Sa 26.09.2009
Autor: ChopSuey

Hi,


> x-a ist abgeleitet 1, da das a ja wie eine Zahl behandelt
> wird oder?

[ok]

Nun überprüfe das mit deiner Lösung :-) Dann findest du den Fehler selbst.

Grüße
ChopSuey


Bezug
                                
Bezug
Differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Sa 26.09.2009
Autor: iamou

Also ich hatte ja das hier raus:

fa'(x)=1/2a * [ 1 * (x-a)² + 2 * (x-a) * x ]

Un jetzt muss ich sozusagen die innere Klammer nochmal ableiten, damit ich auf 1 komme und die 1 hänge ich hinten mit einem Mal ran.

Mir ist klar, dass x-a abgeleitet 1 ist, aber der Zusammenhang zu der oberen Aufgabe fa(x) ist mir nicht klar, also woher die kommt? Habe ich da eine Regel übersehen?

Bezug
                                        
Bezug
Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Sa 26.09.2009
Autor: ChopSuey

Hi,

Ich sehe gerade, dass in deiner nachträglichen Mitteilung die Ableitung korrekt ist.

Ableitung der Funktion lautet:

$ \ [mm] f_a'(x) [/mm] = [mm] \frac{a}{2} \left( (x-a)^2+\green{x\cdot{}2}(x-a) \right) [/mm] $

dein erstes Ergebnis lautete:

$\ [mm] f_a'(x)=\frac{1}{2}a *\left(1*(x-a)^2 + \green{2*x}* (x-a)*\red{x}\right) [/mm] $

In deiner Mitteilung hast du dich korrigiert und dein Ergebnis war

$\ [mm] f_a'(x)=\frac{1}{2}a *\left(1*(x-a)^2 + \green{2} * (x-a) * \green{x}\right) [/mm] $

und hier ist alles richtig [ok]

Habe deine Mitteilung zu spät gesehen, sorry.

Aber es wäre auch hilfreich gewesen, wenn du den Formeleditor genutzt hättest :-) Das ist wesentlich übersichtlicher und man findet Fehler schneller.

Grüße
ChopSuey

Bezug
                                                
Bezug
Differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Sa 26.09.2009
Autor: iamou

Ja, trotzdem danke für deine Bemühungen. Ich werde in Zukunft versuchen mit dem Formeleditor zu arbeiten. Versprochen :D Meine Ableitung war tatsächlich richtig.  Weißt du wo mein Fehler lag? Ich habe richtig abgeleitet und  mich ständig gefragt, wie die das im Lösungsbuch vereinfacht haben. Die haben einfach das (x-a)² ausmultipliziert und zusammengerechnet bzw. vereinfacht ^^ Ich Depp sehe vor lauter Bäumen den Wald nicht.

Trotzdem, vielen Dank nochmal für deine Bemühungen.

Bezug
                                                        
Bezug
Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Sa 26.09.2009
Autor: ChopSuey

Hi iamou,

freut mich, dass du den vermeintlichen Fehler entdeckt hast :-)

Viel Erfolg bei weiteren Übungen!

Grüße
ChopSuey



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]