Differentiationsproblem < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:45 So 28.11.2010 | Autor: | Bobele |
Ich habe keine Aufgabenstellung, sondern eine Frage bezüglich Differentiationsregeln. Es handelt sich um das Problem, dass ich Funktionen A(B) habe und B(Z), so dass auch A(Z) gilt. Wenn ich nun [mm] d^2A/dZ^2 [/mm] anders ausdrücken will mit Hilfe der Beziehung [mm] d(A)/dZ =dA/dB *dB/dZ [/mm] würde ich es so rechnen. [mm] d^2A/dZ^2 = d/dZ (dA/dZ) = d/dZ (dA/dB*dB/dZ) = d^2A/(dBdZ)*dB/dZ + dA/dB*d^2B/dZ^2 =d^2A/dZ^2 + dA/dB*d^2B/dZ^2 [/mm]. Die Gleichung stimmt nicht, dass ist mir klar, aber grundsätzlich sehe ich den Fehler in meiner Rechnung nicht. Das richtige Ergebnis ist [mm] d^2A/dB^2*(dB/dZ)^2+dA/dB*d^2B/dZ^2 [/mm]. Wie komme ich darauf? Kann mir vielleicht einer die Rechenschritte aufzeigen, die mich auf dieses Ergebnis bringen? Mein Ansatz war die Kettenregel, aber anscheinend muss man hier noch eine andere Regel anwenden.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Bobele,
> Ich habe keine Aufgabenstellung, sondern eine Frage
> bezüglich Differentiationsregeln. Es handelt sich um das
> Problem, dass ich Funktionen A(B) habe und B(Z), so dass
> auch A(Z) gilt. Wenn ich nun [mm]d^2A/dZ^2[/mm] anders ausdrücken
> will mit Hilfe der Beziehung [mm]d(A)/dZ =dA/dB *dB/dZ[/mm] würde
> ich es so rechnen. [mm]d^2A/dZ^2 = d/dZ (dA/dZ) = d/dZ (dA/dB*dB/dZ) = d^2A/(dBdZ)*dB/dZ + dA/dB*d^2B/dZ^2 =d^2A/dZ^2 + dA/dB*d^2B/dZ^2 [/mm].
> Die Gleichung stimmt nicht, dass ist mir klar, aber
> grundsätzlich sehe ich den Fehler in meiner Rechnung
> nicht. Das richtige Ergebnis ist
> [mm]d^2A/dB^2*(dB/dZ)^2+dA/dB*d^2B/dZ^2 [/mm]. Wie komme ich darauf?
> Kann mir vielleicht einer die Rechenschritte aufzeigen, die
> mich auf dieses Ergebnis bringen? Mein Ansatz war die
> Kettenregel, aber anscheinend muss man hier noch eine
> andere Regel anwenden.
Nun, die erste Ableitung ist ja
[mm]\bruch{dA}{dZ}=\bruch{dA}{dB}*\bruch{dB}{dZ}=A_{B}\left( \ B\left(Z \right) \ \right)* B_{Z}\left(Z\right)[/mm]
Nochmalige Ableitung ergibt:
[mm]\bruch{d^{2}A}{dZ^{2}}=\bruch{dA_{B}}{dZ}*B_{Z}+A_{B}*\bruch{dB_{Z}}{dZ}[/mm]
Die Ableitung [mm]\bruch{dA_{B}}{dZ}[/mm] wird wieder mit
der Kettenregel gebildet, da [mm]A_{B}=A_{B}\left( \ B\left(Z\right) \ \right)[/mm]
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruss
MathePower
|
|
|
|