www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL bestimmen
DGL bestimmen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Di 30.04.2013
Autor: Totodil

Aufgabe
Lösen Sie folgende DGL:

y´*cosx - y*sinx = 1

Hallo,
ich komme bei dieser Aufgabe nicht weiter.
Für die homogene Lösung habe ich raus:
y= - c * cosx

Die Ableitung davon lautet
y´= -c´* cosx + c * sinx

Dies in die DGL eingesetzt:

-c´cos²x + 2*c *sinx * cosx = 1

Weiter komme ich nicht, weiß einfach nicht weiter.

Als Lösung soll herauskommen: y= (x+c)/cosx

Wäre schön wenn Ihr mir helfen könntet!

Danke
Gruß
Thorsten

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
DGL bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Di 30.04.2013
Autor: leduart

Hallo
die Lösung deiner homogenen ist falsch. richtig ist y=c/cos(x)
wie kommst du auf deine Lösung?
Gruss leduart

Bezug
                
Bezug
DGL bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:21 Di 30.04.2013
Autor: Totodil

Ich habe die homogene Lösung folgendermaßen bestimmt:
y'*cosx - y sinx=0
(dy/dx) *cos x = y*sinx
dy/y = (sinx / cosx) dx
Integration:
ln|y| = -ln|cosx| + a
y = -cosx + [mm] e^a [/mm]

y= -c*cosx

Wo liegt mein Fehler?

Bezug
                        
Bezug
DGL bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Di 30.04.2013
Autor: Calculu

Das sollte dir helfen:

[mm] e^{-ln(cos(x))} [/mm] = [mm] \bruch{1}{e^{ln(cos(x))}} [/mm] = [mm] \bruch{1}{cos(x)} [/mm]



Bezug
                
Bezug
DGL bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 Di 30.04.2013
Autor: Totodil

Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]