www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - DGL Stetigkeit und Eindeutigke
DGL Stetigkeit und Eindeutigke < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Stetigkeit und Eindeutigke: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:01 Mo 24.11.2008
Autor: cutter

Aufgabe
Betrachten Sie das AWP:
[mm] x^{(17)}+3x^{(16)}+3^2x^{(15)}+...+3^16x^{(1)}+3^{17}x=exp(sin(arctan(t))^5cos(arctan(x))^7)^{11} [/mm]

mit den Anfangsbedingungen [mm] x^{(16)}(0)=1, x^{(15)}(0)=2 [/mm] ,..., x(0)=16

a.) ZZ: Das AWP hat eine eindeutige Lösung auf dem Intervall [mm] (-\delta, \delta) [/mm] mit geeignetem [mm] \delta [/mm]

b.)Finden Sie das maximale Definitionsintervall der Lösung des AWP. Ist die Lösung dort eindeutig ?

Aufgabenteil a.) klingt fuer mich nach dem lokalen Satz von Picard Lindelöf.
Also zeige ich, dass die partiellen Ableitungen von [mm] exp(sin(arctan(t))^5cos(arctan(x))^7)^{11} [/mm] stetig sind und damit ist die definierte Funktion stetig diffbar woraus die lokale lipschitze Stetigkeit folgt und damit kann ich den Satz von Picard Lindelöf anwenden. Reicht das zu a. ) ? Die Ableitungen sind zwar ein wenig komplex, bestehen aber nur aus Kompositionen von stetigen Funktionen. Damit sollte das nicht schwer sein.

Wie kann ich bei b. ) vorgehen ? ...Eine Lösung kann ich so nicht bestimmen.

Viele Grüße


        
Bezug
DGL Stetigkeit und Eindeutigke: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Mi 26.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]