DGL 4. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 02:35 Do 02.04.2009 | Autor: | Lessi |
Aufgabe | Ortsfunktion des schwingenden Balkens |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Vorinformation
Ortsfunktion des schwingenden Balkens: [mm] \bruch{d^{4} * X}{dx^{4}} [/mm] - [mm] \beta^4 [/mm] * X = 0
Ich löse diese Gleichung mit folgendem Ansatz: X(x) = [mm] \summe_{i=1}^{n=4} C_{i} [/mm] * [mm] e^{\lambda_{i} x}
[/mm]
Somit erhalte ich: [mm] \lambda^{4} [/mm] * [mm] Ce^{\lambda x} [/mm] - [mm] \beta^{4} [/mm] * [mm] Ce^{\lambda x} [/mm] = 0
es folgt: [mm] \lambda^{4} [/mm] = [mm] \beta^{4}
[/mm]
es ergibt sich: [mm] \lambda_{12} [/mm] = [mm] \pm j\beta [/mm] und [mm] \lambda_{34} [/mm] = [mm] \pm \beta
[/mm]
Die Ortsfunktion lautet somit: X(x) = [mm] C_{1} e^{-j \beta x} [/mm] + [mm] C_{2} e^{j \beta x} [/mm] + [mm] C_{3} e^{-\beta x} [/mm] + [mm] C_{4} e^{\beta x}
[/mm]
Wendet man die Eulerformeln an: [mm] e^{\pm jx} [/mm] = cos(x) [mm] \pm [/mm] jsin(x) und [mm] e^{\pm x} [/mm] = cosh(x) [mm] \pm [/mm] sinh(x)
wird die Ortsfunktion zu:
X(x) = [mm] C_{1}(cos(\beta*x)-jsin(\beta*x)) [/mm] + [mm] C_{2}(cos(\beta*x)+jsin(\beta*x)) [/mm] + [mm] C_{3}(cosh(\beta*x)-sinh(\beta*x)) [/mm] + [mm] C_{4}(cosh(\beta*x)+sinh(\beta*x)) [/mm]
Frage:
Wie komme ich jetzt auf die Lösung:
X(x) = [mm] C_{1} sin(\beta*x) [/mm] + [mm] C_{2} cos(\beta*x) [/mm] + [mm] C_{3} sinh(\beta*x)+ C_{4} cosh(\beta*x)
[/mm]
Ich vermute
es könnte ein Additionstheorem sein ich find aber nichts passendes.
es könnte aber auch etwas mit den Konstanten zu tun haben. Habe irgenwas in Erinnerung mit [mm] C_{1} [/mm] = [mm] C_{1}-C_{2} [/mm] und [mm] C_{2} [/mm] = [mm] C_{1}+C_{2} [/mm] oder so ähnlich. Ich finde aber im Internet nichts darüber. Außerdem finde ich das Konstanten zusammenfassen ein bisschen absurt weil ich nicht weiß nach welchem Schema man da vorgeht und weshalb man so etwas überhaupt darf.
Falls mir jemand weiterhelfen könnte wäre ich sehr dankbar.
|
|
|
|
Hallo!
Der Trick ist ganz einfach.
DU hast da z.B.:
$ [mm] C_{1}(cos(\beta\cdot{}x)-jsin(\beta\cdot{}x)) [/mm] $ + $ [mm] C_{2}(cos(\beta\cdot{}x)+jsin(\beta\cdot{}x)) [/mm] $
$= [mm] C_{1}\cos(\beta\cdot{}x)-C_{1}j\sin(\beta\cdot{}x) [/mm] + [mm] C_{2}\cos(\beta\cdot{}x)+C_{2}j\sin(\beta\cdot{}x) [/mm] $
$= [mm] C_{1}\cos(\beta\cdot{}x)+ C_{2}\cos(\beta\cdot{}x)-C_{1}j\sin(\beta\cdot{}x) +C_{2}j\sin(\beta\cdot{}x) [/mm] $
$= [mm] (C_{1}+ C_{2})\cos(\beta\cdot{}x) +(C_{2}-C_{1})j\sin(\beta\cdot{}x) [/mm] $
$= [mm] D_1\cos(\beta\cdot{}x) +D_2j\sin(\beta\cdot{}x) [/mm] $
Die Koeffizienten kommen aus deinem Ansatz und sind in der Lösung ja (anfangswertabhängige) Konstanten. Und da du auch [mm] 5*\sin(x)+3*\sin(x) [/mm] zusammenfassen würdest, ist es nicht absurd, das auch hier zu tun.
Was absurd ist, ist [mm] $C_1=(C_{1}+ C_{2})$ [/mm] zu setzen, denn das stimmt nicht. Die C's in deiner Lösung und die in er Musterlösung haben unterschiedliche Definitionen und sind daher nicht identisch. Führe dafür besser neue Konstanten ein, und vergleiche, ob der Aufbau der beiden Lösungen gleich ist.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:34 Do 02.04.2009 | Autor: | Lessi |
Gute Antwort, danke auch fürs erklären ich dachte mir nämlich wie soll das gehen [mm] C_{1} [/mm] = [mm] (C_{1} [/mm] + [mm] C_{2}) [/mm] aber jetzt habe ich alles verstanden und auch warum man die Konstanten zusammenfassen darf.
Manchmal scheitert man halt an den einfachsten Dingen.
|
|
|
|