www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 2. Ordnung Reduzieren
DGL 2. Ordnung Reduzieren < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 2. Ordnung Reduzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 So 18.12.2016
Autor: Kruemelmonster2

Aufgabe
Wir betrachten einen masselosen Stab der Länge $l$, der an einem Ende aufgehängt ist und am anderen Ende einen Massenpunkt $m$ trägt. Mit [mm] $\Theta$ [/mm] bezeichnen wir den Auslenkungswinkel des Pendels aus der Vertikalen. Nach den Gesetzen (oder den Modellen) der Mechanik ist die Winkelbeschleunigung [mm] $\ddot{\Theta}$ [/mm] proportional dem Kraftmoment des Gewichts:


                                                                               $I [mm] \ddot{\Theta}=-mgl\cdot\sin\Theta$ [/mm]


wobei $I = [mm] ml^{2}$ [/mm] das Trägheitsmoment ist.

Entdimensionalisieren Sie die Gleichung und überführen Sie diese Differentialgleichung 2. Ordnung durch eine geeignete Substitution in ein Differentialgleichungssystem 1. Ordnung. Tipp:
Führen Sie als zweite Variable die Winkelgeschwindigkeit ein.

Entdimensionalisiert habe ich das ganze wie folgt:

[mm] $\psi\left(\tau\right)=\frac{\Theta\left(\tau\overline{t}\right)}{\overline{\Theta}}$; $\tau=\frac{t}{\overline{t}}$ [/mm]

[mm] $\ddot{\psi}=&\frac{\overline{t}^{2}}{\overline{\Theta}}\ddot{\Theta}\\=&\frac{\overline{t}^{2}}{\overline{\Theta}}\cdot\frac{-mgl\cdot\sin\Theta}{I}\\=&\frac{\overline{t}^{2}}{\overline{\Theta}}\cdot\frac{-mgl\cdot\sin\Theta}{ml^{2}}\\=&\frac{\overline{t}^{2}}{\overline{\Theta}}\cdot\frac{-g\cdot\sin\Theta}{l} =&\frac{\overline{t}^{2}}{\overline{\Theta}}\cdot\frac{-g\cdot\sin\left(\psi\overline{\Theta}\right)}{l}$ [/mm]


Skalenwahl: [mm] $\overline{t}=\sqrt{\frac{l}{g}}$ [/mm]


[mm] $\ddot{\psi}=-\sin\left(\psi\overline{\Theta}\right)$ [/mm]

Das ist dann meine Entdimensionalisierte Gleichung.


Nun soll ich diese ja Reduzieren indem ich irgendwie die Winkelgeschwindigkeit [mm] $\dot{\Theta}$ [/mm] einführe und geeignet substituieren.

Allerdings weiss ich nicht genau wie ich die einführen soll sodass es mir was bringt. Zumal ich doch mit der Entdimensionalisierten Form weitermachen soll.

Sprich [mm] $\ddot{\psi}=-\sin\left(\psi\overline{\Theta}\right)$ [/mm] soll zur DGL 1. Ordnung.
Dort kommt ja so erstmal gar nichts drin vor, was mit der Winkelgeschwindigkeit zu tun hat.

Nun weiss ich leider nicht mehr weiter.



        
Bezug
DGL 2. Ordnung Reduzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mo 19.12.2016
Autor: leduart

Hallo
Dgl 2 der Ordnung in ein System 1. Ordnung zu überführen ist immer dasselbe
hier
[mm] \psi'=\omega [/mm]
[mm] \omega'=(\psi'')= f(\psi) [/mm]
da System 1. der Ordnung da steht ist das wohl gemeint.
anderer Weg:
man multipliziert die Dgl  mit [mm] \Theta' [/mm] bzw [mm] \Psi' [/mm]
und sieht dass f'*f''=d/dt(f'^2) und sin(f)*f' =-d/dt(cos(f)) ist
dann kann man 1 mal integrieren.
ich denke nicht, dass das zweite hier gemeint ist.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]