www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL-System
DGL-System < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL-System: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:23 Mi 14.01.2015
Autor: rollroll

Aufgabe
Bestimme die Lösung des DGL-Systems
[mm] y'=\pmat{ -1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & -1 }y+\vektor{1 \\ x \\0} [/mm]

Hallo,

ich stehe gerade gewaltig auf dem Schlauch. Die homogene DGL zu lösen, war kein Problem, ich hänge bei der inhomogenen Gleichung. Ich mache den Ansatz vom Typ der rechten Seite , wobei 0 eine einfache Nullstelle des charkateristischen Polynoms ist, weshalb eine einfache Resonanz vorliegt.

Also [mm] y_p=(ax+bx^2) [/mm] (alles als Vektoren gedacht)
[mm] y_p'=(a+2bx) [/mm]

Eingesetzt in die DGL erhalte ich dann allerdings als 2. Gleichung:

[mm] a_2+2b_2x=2a_2x+2b_2x^2+x [/mm]

Das funktioniert aber leider nicht...

Wo liegt der Fehler?

        
Bezug
DGL-System: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:54 Mi 14.01.2015
Autor: rollroll

Oder ist evtl der Ansatz schon falsch?

Bezug
                
Bezug
DGL-System: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 16.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
DGL-System: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Fr 16.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]