Coulombkraft < Physik < Naturwiss. < Vorhilfe
|
Hallo,
ich habe eine Aufgabe, bei der ich berechnen soll, wie lange es dauert, bis ein Teilchen mit der Ladung q = [mm] 0.01*10^{-6} [/mm] C und der Masse [mm] m=10^{-3} [/mm] kg, dass sich im Abstand d=2cm vom Kern der selben Ladung befindet den Abstand [mm] d_{2}=4cm [/mm] vom Kern hat. Der Kern befindet sich im Koordinatenursprung und kann sich nicht bewegen.
Ich habe folgenden Ansatz:
[mm] m*a=\frac{1}{4\pi\epsilon_{0}}\frac{q^{2}}{r^{2}} [/mm] für a eingesetzt [mm] m*\frac{d^{2}r}{dt^{2}}=\frac{1}{4\pi\epsilon_{0}}\frac{q^{2}}{r^{2}} [/mm] und umgestellt und Grenzen eingesetzt
[mm] \frac{4\pi\epsilon_{0}m}{q^{2}}\integral_{0.02}^{0.04}{r^{2} d^{2}r}=\integral_{0}^{t}{t^{'} d^{2}t^{'}}
[/mm]
Dann erhalte ich [mm] \frac{4\pi\epsilon_{0}m}{q^{2}}*2*10^{-7}=\frac{1}{2}*t^{2} [/mm] => [mm] t=\wurzel{\frac{8\pi\epsilon_{0}*m}{q^{2}}*2*10^{-7}}=0.021s
[/mm]
Mir erscheint das etwas zu viel.
Wäre nett, wenn mir jemand sagen könnte, ob das so hinhaut.
Vieln dank,
LordPippin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:05 Mi 04.05.2011 | Autor: | leduart |
Hallo
was soll denn
$ [mm] \integral_{0.02}^{0.04}{r^{2} d^{2}r}bedeuten?
[/mm]
d^2r ist doch nur im nenner als symbol für 2 maliges ableiten.
r ist eine Funktion von t!
so kann man Dgl 2 ten grades nicht behandeln.
Beispiel :$ [mm] frac{d^{2}r}{dt^{2}}=-k*r [/mm] $ Lösung [mm] r=Asin\wurzel{k}*t+B*cos\wurzel{k}*t [/mm] die du kennen solltest. probiers mal mit dem Energiesatz.
gruss leduart
|
|
|
|
|
Hallo leduart,
vielen Dank für deine Hilfe.
Habe es mal mit dem Energiesatz gemacht.
[mm] \frac{1}{4\pi\epsilon_{0}}\frac{q^{2}}{r_{0.02}}+\frac{1}{2}mv_{0}^{2}=\frac{1}{4\pi\epsilon_{0}}\frac{q^{2}}{r}+\frac{1}{2}mv^{2} [/mm] , wobei [mm] v_{0}=0
[/mm]
[mm] \frac{1}{4\pi\epsilon_{0}}\frac{q^{2}}{r_{0.02}}=\frac{1}{4\pi\epsilon_{0}}\frac{q^{2}}{r}+\frac{1}{2}mv^{2}
[/mm]
das ganze etwas umgestellt
[mm] v^{2}=\frac{q^{2}}{2m\pi\epsilon_{0}}\frac{1}{r_{0.02}}-\frac{q^{2}}{2m\pi\epsilon_{0}}\frac{1}{r}
[/mm]
[mm] (\frac{dr}{dt})^{2}=\frac{q^{2}}{2m\pi\epsilon_{0}}*(\frac{1}{r_{0.02}}-\frac{1}{r})
[/mm]
[mm] \frac{dr}{dt}=\wurzel{\frac{q^{2}}{2m\pi\epsilon_{0}}}*\wurzel{(\frac{1}{r_{0.02}}-\frac{1}{r})}
[/mm]
[mm] \integral_{0.02}^{0.04}{\frac{dr}{\wurzel{(\frac{1}{r_{0.02}}-\frac{1}{r})}}}=\wurzel{\frac{q^{2}}{2m\pi\epsilon_{0}}}\integral_{0}^{t}dt [/mm] das linke Integral mit Wolfram Alpha
[mm] 0.0064929=\wurzel{\frac{q^{2}}{2m\pi\epsilon_{0}}}t [/mm] eingesetzt und umgestellt folgt daraus
t=0.153s
Wobei mir das jetzt viel zu lang vorkommt.
Gruß
LordPippin
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:47 Mi 04.05.2011 | Autor: | leduart |
Hallo
bis zu den Integralen find ich keinen Fehler. ob wolfram richtig gerechnet und du die Konstanten richtig eingegeben hast will ich nicht nachrechnen. 1g ist ziemlich viel Masse, abschätzen kannst dus ja, indem du die Beschleunigung am Anfang und Ende mittelst. und [mm] s=a/2t^2 [/mm] rechnest. das sollte dieselbe Größenordnung geben.
Gruss leduart
|
|
|
|