Bruchgleichung lösen < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 08:49 Di 18.01.2011 | Autor: | Cessju |
Aufgabe | [mm] (x+3)/(x+2)+(2/x)=(7x^2+12x-20)/(4x^2-16)+1/(2-x)-3/4 [/mm] |
Guten Morgen liebes Mathe-Forum,
ich plage mich seit Tagen mit einer Aufgabe bei der ich nicht zu einem Ergebnis komme. Ich habe sie in allen Variationen gerechnet und finde meinen Fehler einfach nicht. Ich habe sie bei Wolframalpha eingegeben und dort gibt es eine eindeutige Lösung auf die ich allerdings nicht komme.
Ich wäre sehr dankbar, wenn mich jemand korrigieren könnte, da es sich bei der Aufgabe um eine mögliche prüfungsaufgabe handeln könnte, die ich am Samstag lösen muss. (Ich machen z.Z. einen Immaturenkurs und schreibe am Samstag die Matheklausur).
Ich bedanke mich im Voraus und hoffe, dass ich die Aufgabe richtig eingegeben habe.
Mein Ansatz:
ich habe den Hautnenner bestimmt in dem ich von dem Nenner [mm] 4x^2-16 [/mm] die 4 ausgeklammert habe und dann 4(x-2)*(x+2) geschrieben habe.
Dann habe ich mir angesehen was in den anderen Nennern vorhanden ist.
1.) (x+2)
2.) x
3.) 4 (x+2)*(x-2)
4.) durch den wechsel des Vorzeichens beim gesamten Term habe ich satt +1/(2-x) dann -1/(x-2) geschrieben also ist (x-2) vorhanden
5.) 4
Ich habe also 4*x*(x-2)*(x+2) also HN bestimmt.
Dann habe ich die jeweiligen Zähler immer mit dem ergänzt was zum HN fehlt.
[mm] 4*(x-2)*(x+3)+2*4*(x-2)*(x+2)=x*(7x^2+12x-20)-1*4*x*(x+2)-3*x*(x-2)*(x+2)
[/mm]
wenn ich die klammern ausmultipliziere und alles ausrechne komme ich immer auf eine quadratische Gleichnug die ich dann versucht habe auf Normalform zu bringen und mit der pq-Formel zu lösen.
Dies hat leider nie zu einem Ergebnis geführt.
Ich hoffe jemand kann mir die Fehlerquelle nennen.
Vielen Dank für die Mühe!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:08 Di 18.01.2011 | Autor: | statler |
> [mm](x+3)/(x+2)+(2/x)=(7x^2+12x-20)/(4x^2-16)+1/(2-x)-3/4[/mm]
Guten Morgen!
> ich plage mich seit Tagen mit einer Aufgabe bei der ich
> nicht zu einem Ergebnis komme. Ich habe sie in allen
> Variationen gerechnet und finde meinen Fehler einfach
> nicht. Ich habe sie bei Wolframalpha eingegeben und dort
> gibt es eine eindeutige Lösung auf die ich allerdings
> nicht komme.
> Ich wäre sehr dankbar, wenn mich jemand korrigieren
> könnte, da es sich bei der Aufgabe um eine mögliche
> prüfungsaufgabe handeln könnte, die ich am Samstag lösen
> muss. (Ich machen z.Z. einen Immaturenkurs und schreibe am
> Samstag die Matheklausur).
> Ich bedanke mich im Voraus und hoffe, dass ich die Aufgabe
> richtig eingegeben habe.
>
> Mein Ansatz:
> ich habe den Hautnenner bestimmt in dem ich von dem Nenner
> [mm]4x^2-16[/mm] die 4 ausgeklammert habe und dann 4(x-2)*(x+2)
> geschrieben habe.
>
> Dann habe ich mir angesehen was in den anderen Nennern
> vorhanden ist.
> 1.) (x+2)
> 2.) x
> 3.) 4 (x+2)*(x-2)
> 4.) durch den wechsel des Vorzeichens beim gesamten Term
> habe ich satt +1/(2-x) dann -1/(x-2) geschrieben also ist
> (x-2) vorhanden
> 5.) 4
> Ich habe also 4*x*(x-2)*(x+2) also HN bestimmt.
> Dann habe ich die jeweiligen Zähler immer mit dem
> ergänzt was zum HN fehlt.
>
> [mm]4*(x-2)*(x+3)+2*4*(x-2)*(x+2)=x*(7x^2+12x-20)-1*4*x*(x+2)-3*x*(x-2)*(x+2)[/mm]
Da fehlt mindestens beim 1. Summanden der Faktor x.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:35 Di 18.01.2011 | Autor: | Cessju |
Guten Morgen nach HH,
danke für die schnelle Reaktion, ich habe gerade in meine Unterlagen geschaut und gesehen, dass ich den ersten Term natürlich auch noch mit x erweitert habe. Es muss also richtig heißen:
[mm] (x+3)*(x-2)*x*4+2*4*(x-2)*(x+2)=x*(7x^2+12x-20)-1*4*x*(x+2)-3*x*(x-2)*(x+2)
[/mm]
trotzdem kommt nichts Gescheites dabei raus...
>
> Guten Morgen!
>
> > ich plage mich seit Tagen mit einer Aufgabe bei der ich
> > nicht zu einem Ergebnis komme. Ich habe sie in allen
> > Variationen gerechnet und finde meinen Fehler einfach
> > nicht. Ich habe sie bei Wolframalpha eingegeben und dort
> > gibt es eine eindeutige Lösung auf die ich allerdings
> > nicht komme.
> > Ich wäre sehr dankbar, wenn mich jemand korrigieren
> > könnte, da es sich bei der Aufgabe um eine mögliche
> > prüfungsaufgabe handeln könnte, die ich am Samstag lösen
> > muss. (Ich machen z.Z. einen Immaturenkurs und schreibe am
> > Samstag die Matheklausur).
> > Ich bedanke mich im Voraus und hoffe, dass ich die Aufgabe
> > richtig eingegeben habe.
> >
> > Mein Ansatz:
> > ich habe den Hautnenner bestimmt in dem ich von dem
> Nenner
> > [mm]4x^2-16[/mm] die 4 ausgeklammert habe und dann 4(x-2)*(x+2)
> > geschrieben habe.
> >
> > Dann habe ich mir angesehen was in den anderen Nennern
> > vorhanden ist.
> > 1.) (x+2)
> > 2.) x
> > 3.) 4 (x+2)*(x-2)
> > 4.) durch den wechsel des Vorzeichens beim gesamten
> Term
> > habe ich satt +1/(2-x) dann -1/(x-2) geschrieben also ist
> > (x-2) vorhanden
> > 5.) 4
> > Ich habe also 4*x*(x-2)*(x+2) also HN bestimmt.
> > Dann habe ich die jeweiligen Zähler immer mit dem
> > ergänzt was zum HN fehlt.
> >
> >
> [mm]4*(x-2)*(x+3)+2*4*(x-2)*(x+2)=x*(7x^2+12x-20)-1*4*x*(x+2)-3*x*(x-2)*(x+2)[/mm]
>
> Da fehlt mindestens beim 1. Summanden der Faktor x.
>
> Gruß aus HH-Harburg
> Dieter
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:46 Di 18.01.2011 | Autor: | Cessju |
Aufgabe | [mm] (x+3)/(x+2)+2/x=(7x^2+12x-20)/(4x^2-16)+1/(2-x)-3/4 [/mm] |
ich habe nun noch einmal nachgrechnet und komme immer wieder zum gleichen Ergebnis:
also der 1. Zähler wird erweitert mit 4*x*(x-2)
der 2. mit 4*(x-2)*(x+2)
der 3. mit x
der 4. mit 4*x+(x+2)
der 5. mit x*(x-2)*(x+2)
ist das denn noch korrekt?
|
|
|
|
|
Hallo Cessju,
> [mm](x+3)/(x+2)+2/x=(7x^2+12x-20)/(4x^2-16)+1/(2-x)-3/4[/mm]
> ich habe nun noch einmal nachgrechnet und komme immer
> wieder zum gleichen Ergebnis:
>
> also der 1. Zähler wird erweitert mit 4*x*(x-2)
> der 2. mit 4*(x-2)*(x+2)
> der 3. mit x
> der 4. mit 4*x+(x+2)
> der 5. mit x*(x-2)*(x+2)
>
> ist das denn noch korrekt?
Ja, soweit stimmt es fast - der 4. wird natürlich mit 4x(x+2) erweitert. Auch ansonsten ist ein bisschen Vorsicht beim 4. Bruch geboten; im Nenner steht ja 2-x=-(x-2). Hier macht man leicht einen Vorzeichenfehler.
Wenn Du alle Brüche erweitert hast, genügt es ja, nur noch die Zähler zu betrachten. Allerdings muss man im Hinterkopf behalten, dass der Nenner nicht Null werden darf - wenn man also im Zähler x=0 oder x=2 oder x=-2 als Lösung erhält, muss man den Fall noch einmal gesondert betrachten.
Grüße
reverend
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:07 Di 18.01.2011 | Autor: | Cessju |
Hallo reverend
vielen Dank für die schnelle Antwort.
dann habe ich also den richtigen HN und richtig erweitert, nun komme ich jedoch nicht zu einem "geraden" Ergebins. Ich zweifle ja ungern an den Aufgaben und immer erst an mir, aber kann es sein, dass man bei dieser Aufgabe nur zu einem Ergebnis als Dezimalzahl kommt? (uns wurde gesagt, dass die Aufgaben so sind, dass man davon ausgehen kann, dass das ergebnis gerade ist)
|
|
|
|
|
Hallo, Hauptnenner iat [mm] x*(4x^{2}-16)
[/mm]
Erweiterungsfaktoren:
1. Bruch: 4x(x-2)
2. Bruch: [mm] (4x^{2}-16)
[/mm]
3. Bruch: x
4. Bruch: -4x(x+2)
5. Bruch: [mm] x(x^{2}-4)
[/mm]
jetzt sind die Zähler zu betrachten
[mm] (x+3)*4x(x-2)+2*(4x^{2}-16)=(7x^{2}+12x-20)*x+1*(-4x)(x+2)-3*x(x^{2}-4)
[/mm]
jetzt löse alle Klammern auf, du bekommst eine schöne quadratische Gleichung mit zwei ganzzahligen Lösungen, beachte dann den Hinweis von reverend
Steffi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:43 Di 18.01.2011 | Autor: | statler |
Hi,
ich kriege da durch händische Rechnung eine quadr. Gl. mit 2 astreinen ganzzahligen Lösungen, von denen eine allerdings nicht paßt (s. die Bem. vom reverend)
Gruß Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:46 Di 18.01.2011 | Autor: | Cessju |
Heureka ich habs!Ich danke Euch! ich hatte einfach ein ^2 vergessen. Nun habe ich -2 und 4 als Lösung und -2 ist nicht Element der lösungsmenge :)
Danke ich freu mich, Ihr glaubt nicht wie oft ich diese Aufgabe nun schon gerechnet habe!!!Nun stimmt die Antwort auch mit der "Rechenmaschine" überein :)))
DANKE!
|
|
|
|