Borelmessbare Mengen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:13 Mo 15.11.2010 | Autor: | StefanK. |
Aufgabe | Sei f: [mm] (\IR, B(\IR)) [/mm] --> [mm] (\IR, B(\IR)). [/mm] Sei {x : f(x)=c} messbar für alle
c in [mm] \IR. [/mm] Folgt daraus, dass die Funktion f(x) messbar ist?
Hinweis: Sie dürfen ohne Beweis verwenden, dass es auf [mm] \IR [/mm] nicht Borelmessbare Mengen gibt. |
Hallo,
hier komme ich einfach nicht mir klar. Wenn f(x)=c für alle c gilt, so ist die Funktion doch überall definiert und hat demnach auch ein Urbild. Somit müsste sie doch messbar sein?! - Wofür dann der Hinweis, dass es auch nicht Borelmessbare Mengen gibt? Wie hab ich mir diese überhaupt vorzustellen?
Hoffentlich kann mir hier jemand helfen.
Viele Grüße
Jan
|
|
|
|
Hiho,
> Hallo, hier komme ich einfach nicht mir klar. Wenn f(x)=c für
> alle c gilt, so ist die Funktion doch überall definiert
> und hat demnach auch ein Urbild.
Da steht nicht, dass $f(x) = c$ ist, sondern dass die Menge [mm] $\{x: f(x) = c\}$ [/mm] meßbar ist, für alle c!
Das kann auch für unendlich viele c bspw. die leere Menge sein.
> Somit müsste sie doch
> messbar sein?! - Wofür dann der Hinweis, dass es auch
> nicht Borelmessbare Mengen gibt? Wie hab ich mir diese
> überhaupt vorzustellen?
Puh...... vorstellen ist da schwierig, da die meisten Mengen, die man sich so vorstellen kann, borelsch sind.
Insbesondere unterscheidet sich eine Nicht-Borel-Menge eh nur durch eine (Lebesgue-)Nullmenge von einer Borel-meßbaren Menge.
Für dich erstmal zum weitermachen: Wie habt ihr denn Meßbarkeit von Funktionen definiert?
Welche Mengen müssen meßbar sein, damit eine Funktion meßbar ist.
Kannst du unter obiger Annahme zeigen, dass die Mengen dann meßbar sind?
Wenn ja => fein
Wenn nicht => warum nicht, wo gehts kaputt?
MFG,
Gono.
> Hoffentlich kann mir hier jemand helfen.
> Viele Grüße
> Jan
|
|
|
|