www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Bogenlänge
Bogenlänge < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bogenlänge: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:42 Mi 28.05.2008
Autor: Goldschatz

Aufgabe
Bestimmen Sie die Länge der Kurve
[mm] $y=\integral_{-\pi/2}^{x} \wurzel{\cos t}\ [/mm] dt$; [mm] $-\pi/2 \le [/mm] x [mm] \le \pi/2$ [/mm]

Hallihallo!

Ich steh grad mal wieder am Schlauch und hoffe, dass ihr mich davon herunter bringt :)

Formel für Bogenlänge ist ja [mm] \integral_{a}^{b} \wurzel{1+(f'(x))^2} [/mm] dx

Ja mein Problem liegt eigentlich schon darin, dass ich mir nicht so ganz sicher bin wie ich das Integral ableiten kann.
Ich dachte zuerst an [mm] \wurzel{cos t}, [/mm] aber da berücksichtige ich ka in keinster Weise die Grenzen und das erscheint mir vollkommen irrsinnig.

Hab aber auch keine andere Idee wie ich das ableiten könnt.

        
Bezug
Bogenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Do 29.05.2008
Autor: fred97

Was soll denn Deine Kurve sein ? So wie Du y angegeben hast ist es völlig sinnlos


FRED

Bezug
        
Bezug
Bogenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:41 Sa 31.05.2008
Autor: Goldschatz

Oh sorry, hatte das von der vorgegebenen Forel nicht weg gelöscht.

Jetzt stimmts- hoffe ihr könnt mir da noch weiter helfen.

Bezug
                
Bezug
Bogenlänge: Gleichung verkehrt
Status: (Antwort) fertig Status 
Datum: 12:34 Sa 31.05.2008
Autor: Infinit

Hallo goldschatz,
die Gleichung zur Bestimmung der Bogenlänge ist immer noch verkehrt, nimm mal die richtige Gleichung und setze die Funktion ein, dann schaun wir mal weiter.
Viele Grüße,
Infinit

Bezug
        
Bezug
Bogenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Di 03.06.2008
Autor: Goldschatz

Also tut mir Leid, aber ich komm da einfach auf kein richtiges Ergebnis-
Hilfe!

Hab jetzt soweit die Formeln geändert damit alles stimmt.

Ich bin mir nichtmal sicher ob ich nach t oder nach x ableiten soll.
Normal doch nach t oder?

Dann krieg ich für die Ableitung 0 raus...

Ja und dann hätt ich da [mm] \integral_{-pi/2}^{pi/2}{ \wurzel{1} dx} [/mm]

Kommt dann pi raus was laut meinen Aufzeichnungen nicht stimmt
*verzweifeltbin*

naja die Variante nach x ableiten hab ich auch schon durch, da würde für die Ableitung [mm] \wurzel{cos*x} [/mm] raus kommen.
Jedoch komm ich dann beim Endergebnis auf nix Richtiges...

Bezug
                
Bezug
Bogenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Di 03.06.2008
Autor: fred97

Kennst Du die Hauptsätze der Diff. - und Integralrechnung ?

Aus einem dieser Sätze folgt , dass Deine gesuchte Ableitung  wurzel(cos(x)) ist

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]