Binomialkoeffizient Beweis 2 < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:24 Sa 31.01.2015 | Autor: | sandroid |
Aufgabe | Zeige für k [mm] \ge [/mm] 2:
[mm] \bruch{\binom{2k}{k}}{2^{2k}} [/mm] = [mm] \bruch{1 * 3 * ... * (2k - 1)}{2 * 4 * ... * (2k)} [/mm] |
Hallo,
eine ganz ähnliche Frage wie die, die ich neulich stellte. Nur habe ich dieses Mal gar keine Lösung gegeben. Mein Ansatz:
[mm] \bruch{\binom{2k}{k}}{2^{2k}} [/mm] = [mm] \bruch{\bruch{2k * (2k - 1) * (2k - 2) * ... * (k + 1)}{k!}}{2^{2k}} [/mm] = [mm] \bruch{k * (k - \bruch{1}{2})*(k-1)*...*(\bruch{k}{2} + \bruch{1}{2})}{2*4*...*2k}
[/mm]
Der Nenner passt also schon einmal, aber wie kann ich den Zähler umformen?
Vielen Dank für jede Hilfe!
Ach ja: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:26 Sa 31.01.2015 | Autor: | Ladon |
Hallo sandroid,
und
Manchmal ist es hilfreich noch mal ganz neu anzusetzen und stur die Definitionen zu nutzen.
Wir werden im folgenden [mm] 2^{2k}=(2^{2})^k=(2\cdot 2)^k=2^k\cdot2^k [/mm] nutzen:
[mm] $\frac {\vektor{2k\\k}}{2^{2k}}:=\frac{\frac{2k\cdot (2k-1)\cdot ...\cdot (k+1)\cdot k \cdot ...\cdot2\cdot 1}{(2k-k)! k!}}{2^{2k}}=\frac{ 2k\cdot (2k-1)\cdot ...\cdot (k+1)\cdot k \cdot ...\cdot2\cdot 1}{k! k!2^{k}2^k}$
[/mm]
$= [mm] \frac{ 2k\cdot (2k-1)\cdot ...\cdot (k+1)\cdot k \cdot ...\cdot2\cdot 1}{k\cdot (k-1)\cdot ...\cdot 2\cdot 1\cdot2^{k}\cdot k\cdot (k-1)\cdot ...\cdot 2\cdot 1\cdot 2^k} [/mm] = [mm] \frac{ 2k\cdot (2k-1)\cdot ...\cdot (k+1)\cdot k \cdot ...\cdot2\cdot 1}{2k\cdot (2k-2)\cdot ...\cdot 4\cdot 2\cdot 2k\cdot (2k-2)\cdot ...\cdot 4\cdot 2} [/mm] $
[mm] $=\frac{ (2k-1)\cdot (2k-3) ...\cdot3\cdot 1}{ 2k\cdot (2k-2)\cdot ...\cdot 4\cdot 2} [/mm] $,
was zu zeigen war.
Das letzte "=" ergibt sich durch Kürzen.
LG
Ladon
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:47 Sa 31.01.2015 | Autor: | sandroid |
Hallo,
vielen Dank für die rasche, sehr gut verständliche Antwort.
Hat mir sehr weiter geholfen.
Gruß,
sandroid
|
|
|
|