www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Beweis einer Gruppe
Beweis einer Gruppe < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Gruppe: Assoziativgesetz
Status: (Frage) beantwortet Status 
Datum: 15:16 Mi 26.11.2008
Autor: carlosfritz

Aufgabe
Sei R ein Ring. Zeigen Sie, dass die Menge U(R) := {r [mm] \in [/mm] R ; r ist Einheit} bezüglich der Multiplikation von R eine Gruppe ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Das die Gruppe das neutrale und Inverse Element enthält ist ja im Grunde logisch, da ja r*s=1=s*r gilt für s [mm] \in [/mm] R.

Aber wie zeige ich das Assoziativgesetzt? Was darf ich dan annhehmen?

meine Idee war x,y,z [mm] \in [/mm] U(R) und dann (xy)z=x(yz) |*xinvers, aber damit kann ich ja nicht viel anfangen, weil ich ja noch nicht weiss, dass das Assotiativgesetzgild. Abo hätte ich am Ende stehen z=z. Aber das kann ja nicht der richtige Weg sein?

        
Bezug
Beweis einer Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Mi 26.11.2008
Autor: fred97


> Zeigen Sie, dass die Menge U(R) := {r 2 R ; r ist Einheit}
> bezüglich der Multiplikation
>  von R eine Gruppe ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Das die Gruppe das neutrale und Inverse Element enthält ist
> ja im Grunde logisch, da ja r*s=1=s*r gilt für s [mm]\in[/mm] R.
>  
> Aber wie zeige ich das Assoziativgesetzt? Was darf ich dan
> annhehmen?
>  
> meine Idee war x,y,z [mm]\in[/mm] U(R) und dann (xy)z=x(yz)
> |*xinvers, aber damit kann ich ja nicht viel anfangen, weil
> ich ja noch nicht weiss, dass das Assotiativgesetzgild. Abo
> hätte ich am Ende stehen z=z. Aber das kann ja nicht der
> richtige Weg sein?


Fragen:  Was ist R ? Ein Ring ?

Was bedeutet {r 2 R ; r ist Einheit} ?  r 2 R ?

FRED

Bezug
                
Bezug
Beweis einer Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:35 Mi 26.11.2008
Autor: carlosfritz

oh..., habe vergessen die Frage mit den Forum-Formeln zu schreiben, danke

Bezug
        
Bezug
Beweis einer Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Do 27.11.2008
Autor: otto.euler

Weil R ein Ring ist, ist die Multiplikation in R assoziativ. Das gilt folglich auch für beliebige Untermengen, also z.B. auch für U(R).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]