Beweis detA = detA^t < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:20 So 22.09.2013 | Autor: | Mila007 |
Aufgabe | det A = [mm] \summe_{\Delta \in S_{n}} [/mm] sgn [mm] \Delta a_{1, \Delta(1)} [/mm] * ... * [mm] a_{n, \Delta(n)}
[/mm]
= [mm] \summe_{\Delta^{ -1} \in S_{n}} [/mm] sgn [mm] \Delta a_{ \Delta(1)^{ -1} , 1} [/mm] * ... * [mm] a_{ \Delta(n)^{ -1} , n}
[/mm]
= [mm] \summe_{ \Delta^{ -1} \in S_{n} } [/mm] sgn [mm] \Delta^{-1} a_{ \Delta(1)^{ -1} , 1 } [/mm] * ... * [mm] a_{ \Delta(n)^{ -1} , n}
[/mm]
= [mm] \summe_{\Delta \in S_{n}} [/mm] sgn [mm] \Delta a_{ \Delta(1) , 1} [/mm] * ... * [mm] a_{ \Delta(n) , n}
[/mm]
= [mm] \summe_{\Delta \in S_{n}} [/mm] sgn [mm] \Delta [/mm] a'_{1, [mm] \Delta(1)} [/mm] * ... * a'_{n, [mm] \Delta(n) [/mm] } = det [mm] A^{t} [/mm] |
Hallo Leute,
ich bereite mich gerade für die mündliche Prüfung vor. Leider verstehe ich den beweis überhaupt nicht. :(
ich weiß, dass man für den beweis die leibnizformel anwendet und von der 2 in die 3 einfach das sgn [mm] \Delta [/mm] durch ihr Inverses ersetzt. Das wars aber leider auch.
Ich verstehe nicht, wieso man zb [mm] a_{ 1, \Delta(1)} [/mm] durch [mm] a_{ \Delta(1) , 1} [/mm] ersetzen darf.
Des Weiteren wäre es echt toll, wenn mir einer sagen kann, wie man so eine Zeile korrekt ausspricht :D "die Summe der Menge aller Permutationen...."?
Achja die Dreiecke sollen alle ein Sigma sein :)
viele Grüße,
mila
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:52 So 22.09.2013 | Autor: | hippias |
> det A = [mm]\summe_{\Delta \in S_{n}}[/mm] sgn [mm]\Delta a_{1, \Delta(1)}[/mm]
> * ... * [mm]a_{n, \Delta(n)}[/mm]
>
> = [mm]\summe_{\Delta^{ -1} \in S_{n}}[/mm] sgn [mm]\Delta a_{ \Delta(1)^{ -1} , 1}[/mm]
> * ... * [mm]a_{ \Delta(n)^{ -1} , n}[/mm]
>
> = [mm]\summe_{ \Delta^{ -1} \in S_{n} }[/mm] sgn [mm]\Delta^{-1} a_{ \Delta(1)^{ -1} , 1 }[/mm]
> * ... * [mm]a_{ \Delta(n)^{ -1} , n}[/mm]
>
> = [mm]\summe_{\Delta \in S_{n}}[/mm] sgn [mm]\Delta a_{ \Delta(1) , 1}[/mm] *
> ... * [mm]a_{ \Delta(n) , n}[/mm]
>
> = [mm]\summe_{\Delta \in S_{n}}[/mm] sgn [mm]\Delta[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
a'_{1, [mm]\Delta(1)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
*
> ... * a'_{n, [mm]\Delta(n)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
} = det [mm]A^{t}[/mm]
> Hallo Leute,
>
> ich bereite mich gerade für die mündliche Prüfung vor.
> Leider verstehe ich den beweis überhaupt nicht. :(
>
> ich weiß, dass man für den beweis die leibnizformel
> anwendet und von der 2 in die 3 einfach das sgn [mm]\Delta[/mm]
> durch ihr Inverses ersetzt. Das wars aber leider auch.
>
> Ich verstehe nicht, wieso man zb [mm]a_{ 1, \Delta(1)}[/mm] durch
> [mm]a_{ \Delta(1) , 1}[/mm] ersetzen darf.
Wie Du zu recht bemerkst, waere das bedenklich. Aber [mm] $a_{ 1, \Delta(1)}$ [/mm] ist genau der [mm] $(\Delta(1),1)$ [/mm] Eintrag der transponierten Matrix und da moechtest Du ja hin. Im Uebrigen bist Du mit den Indices durcheinandergekommen:
$det A= [mm] \sum_{\sigma\in S_{n}} sgn(\sigma) \prod_{i=1}^{n} A_{i,\sigma(i)}= \sum_{\sigma^{-1}\in S_{n}} sgn(\sigma^{-1}) \prod_{i=1}^{n} A_{i,\sigma^{-1}(i)}= \sum_{\sigma\in S_{n}} sgn(\sigma) \prod_{i=1}^{n} A_{\sigma(i),i}= \sum_{\sigma\in S_{n}} sgn(\sigma) \prod_{i=1}^{n} A^{t}_{i,\sigma(i)}= [/mm] det [mm] A^{t}$.
[/mm]
>
> Des Weiteren wäre es echt toll, wenn mir einer sagen kann,
> wie man so eine Zeile korrekt ausspricht :D "die Summe der
> Menge aller Permutationen...."?
Ich wuerde sagen: Die Summe ueber alle Permutation. Das Produkt moechte ich lieber nicht aussprechen
>
> Achja die Dreiecke sollen alle ein Sigma sein :)
>
> viele Grüße,
> mila
|
|
|
|