Beweis abelsche Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:47 Mi 13.04.2011 | Autor: | Loriot95 |
Aufgabe | Sei G:= [mm] \{a_{1}, .... , a_{n} \} [/mm] eine abelsche Gruppe der Ordnung n>0. Zeigen Sie, dass
[mm] (a_{1}***a_{n})^{2} [/mm] = e gilt, wobei e das neutrale Element in G bezeichnet. |
Guten Tag,
habe die Aufgabe versucht, aber bin mir absolut unsicher ob ich das so machen darf... Also: [mm] (a_{1}***a_{n})^{2} [/mm] = [mm] (a_{1}*a_{1}^{-1})^{2}****(a_{n}*a_{n}^{-1})^{2} [/mm] = e****e =e.
Aber irgendwie kommt mir das bisschen zu leicht vor... Darf man das so machen? Stimmt das überhaupt?
LG Loriot95
|
|
|
|
Huhu,
> habe die Aufgabe versucht, aber bin mir absolut unsicher ob
> ich das so machen darf... Also: [mm](a_{1}***a_{n})^{2}[/mm] =
> [mm](a_{1}*a_{1}^{-1})^{2}****(a_{n}*a_{n}^{-1})^{2}[/mm] = e****e
> =e.
Wie kommst du denn von n Faktoren in [mm] $(a_{1}*\ldots*a_{n})$ [/mm] auf 2n Faktoren in [mm] $(a_{1}*a_{1}^{-1})*\ldots*(a_{n}*a_{n}^{-1})$ [/mm] ?
Deine Idee, dass in der Menge [mm] $\{a_1,\ldots,\a_n\}$ [/mm] zu jedem [mm] a_i [/mm] auch das Inverse [mm] $a_i^{-1} [/mm] = [mm] a_j$ [/mm] mit [mm] $i\not= [/mm] j$ drinstecken muss, da es ja eine Gruppe ist, ist schon nicht verkehrt..... für die meisten Elemente wird das auch stimmen.
Für einige aber nicht
Dafür wirst du wohl das Quadrat der Klammer benötigen.
Was gilt denn für die Elemente [mm] a_i, [/mm] die kein Inverses [mm] a_j [/mm] mit [mm] $i\not= [/mm] j$ haben? Was haben die für ein Inverses?
MFG,
Gono.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:34 Do 14.04.2011 | Autor: | Loriot95 |
> Huhu,
>
>
> > habe die Aufgabe versucht, aber bin mir absolut unsicher ob
> > ich das so machen darf... Also: [mm](a_{1}***a_{n})^{2}[/mm] =
> > [mm](a_{1}*a_{1}^{-1})^{2}****(a_{n}*a_{n}^{-1})^{2}[/mm] = e****e
> > =e.
>
> Wie kommst du denn von n Faktoren in [mm](a_{1}*\ldots*a_{n})[/mm]
> auf 2n Faktoren in
> [mm](a_{1}*a_{1}^{-1})*\ldots*(a_{n}*a_{n}^{-1})[/mm] ?
>
> Deine Idee, dass in der Menge [mm]\{a_1,\ldots,\a_n\}[/mm] zu jedem
> [mm]a_i[/mm] auch das Inverse [mm]a_i^{-1} = a_j[/mm] mit [mm]i\not= j[/mm]
> drinstecken muss, da es ja eine Gruppe ist, ist schon nicht
> verkehrt..... für die meisten Elemente wird das auch
> stimmen.
> Für einige aber nicht
> Dafür wirst du wohl das Quadrat der Klammer benötigen.
> Was gilt denn für die Elemente [mm]a_i,[/mm] die kein Inverses [mm]a_j[/mm]
> mit [mm]i\not= j[/mm] haben? Was haben die für ein Inverses?
Diese müssen selbstinvers sein. Dient das Quadrat also dazu, dass es jedes Element doppelt gibt und somit die selbstinversen element aufgrund des quadrats zum neutralen element umgeschrieben werden? Falls ja, wie schreibe ich das denn auf? [mm] (a_{1}****a_{n})^{2} [/mm] = [mm] (a_{i}*a_{j})^{2} [/mm] (für [mm] a_{i}^{-1} [/mm] = [mm] a_{j} [/mm] mit j [mm] \not= i)*(a_{k}*a_{k})^{2} [/mm] (für [mm] a_{k} [/mm] = [mm] a_{k}^{-1}) [/mm] = e*e = e?
LG Loriot95
|
|
|
|
|
Huhu,
> Diese müssen selbstinvers sein. Dient das Quadrat also
> dazu, dass es jedes Element doppelt gibt und somit die
> selbstinversen element aufgrund des quadrats zum neutralen
> element umgeschrieben werden?
So siehts aus.
> Falls ja, wie schreibe ich das denn auf?
Das ist dabei die Herausforderung :P
In Formel würde ich das so machen:
[mm] $(a_1*\ldots*a_n)^2 [/mm] = [mm] \left(\produkt_{i=1}^n a_i\right)^2 [/mm] = [mm] \left(\produkt_{j: a_j^2=e}a_j\right)^2 [/mm] = [mm] \produkt_{j: a_j^2=e}a_j^2 [/mm] = [mm] \produkt_{j: a_j^2=e} [/mm] e = e$
Die Begründung, warum das so geht halt textlicht jeweils hinzuschreiben
MFG,
Gono.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:42 Do 14.04.2011 | Autor: | Loriot95 |
> Huhu,
>
>
> > Diese müssen selbstinvers sein. Dient das Quadrat also
> > dazu, dass es jedes Element doppelt gibt und somit die
> > selbstinversen element aufgrund des quadrats zum neutralen
> > element umgeschrieben werden?
>
> So siehts aus.
>
> > Falls ja, wie schreibe ich das denn auf?
>
> Das ist dabei die Herausforderung :P
>
> In Formel würde ich das so machen:
>
> [mm](a_1*\ldots*a_n)^2 = \left(\produkt_{i=1}^n a_i\right)^2 = \left(\produkt_{j: a_j^2=e}a_j\right)^2 = \produkt_{j: a_j^2=e}a_j^2 = \produkt_{j: a_j^2=e} e = e[/mm]
Diese Schreibweise ist mir noch nie untergekommen... Gut zu wissen das man das darf.
[mm] \left(\produkt_{i=1}^n a_i\right)^2 [/mm] = [mm] \left(\produkt_{j: a_j^2=e}a_j\right)^2 [/mm] Hierbei bei diesem Schritt fielen schon alle i weg für die [mm] a_{i}*a_{j} [/mm] = e mit i [mm] \not= [/mm] j, wenn ich das richtig verstanden habe.
> Die Begründung, warum das so geht halt textlicht jeweils
> hinzuschreiben
>
> MFG,
> Gono.
Danke dir ;)
|
|
|
|