www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Beweis Verallg. Eigenraumzerle
Beweis Verallg. Eigenraumzerle < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Verallg. Eigenraumzerle: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:37 Fr 17.01.2014
Autor: mbra771

Aufgabe
Verallgemeinerte Eigenraumzerlegung
Sei V ein endlichdimensionaler [mm] $\IK$ [/mm] -Vektorraum, und sei $f:V [mm] \to [/mm] V$ ein Endomorphismus, dessen Minimalpolynom in Linearfaktoren zerfällt. Seien [mm] $\lambda_1 [/mm] ... [mm] \lambda_r$ [/mm] die verschiedenen Eigenwerte von $f$. Dann gilt:

[mm] $V=\bigoplus_{i=1}^r V(\lambda_i) [/mm]

Hallo Forum,
ich sitze gerade an dem Beweis dieses Satzes. Davor habe ich den Satz der Eigenraumzerlegung durchgearbeitet. Jetzt drängt sich mir die Frage auf, ob bei diesem Satz überhaupt der Beweis in diesem Umfang nötig ist?

Wenn ich das richtig sehe, dann ist doch jeder Eigenraum eines Eigenwertes eine Teilmenge des verallgemeinerten Eigenraumes (des betreffenden Eigenwertes). Könnte man sich da nicht einfach auf den Beweis der Eigenraumzerlegung berufen?

Viele Grüße,
Micha

        
Bezug
Beweis Verallg. Eigenraumzerle: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 So 19.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]