www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Beweis Halbordnung <=
Beweis Halbordnung <= < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Halbordnung <=: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 20:02 Mi 02.12.2009
Autor: kevf

Aufgabe
Beweisen oder widerlegen Sie folgende Annahme:
Sei [mm] \le [/mm] eine Halbordnung auf einer Menge M und seien x,y  [mm] \in [/mm] M, so dass x [mm] \le [/mm] y nicht gilt. Dann gilt y [mm] \le [/mm] x.

Ich bräuchte Hilfe hierbei, da ich keine Idee habe, wie ich das bewisen oder widerlegen könnte.

Danke schon mal für eure Hilfe !


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Halbordnung <=: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Mi 02.12.2009
Autor: Gonozal_IX

Hiho,

>  Ich bräuchte Hilfe hierbei, da ich keine Idee habe, wie
> ich das bewisen oder widerlegen könnte.

überlege dir erstmal, was eine Halbordnung ist. Schreib das mal hier auf und dann überlege, was für 2 Elemente x,y bezüglich der Halbordnung passieren kann.

MFG,
Gono.

Bezug
                
Bezug
Beweis Halbordnung <=: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Mi 02.12.2009
Autor: kevf

Ich denke genau daran liegt es, dass ich es nicht verstehe.  Wenn ich das definieren könnte, wüsste ich warscheinlich schon, was zu tun ist.
Kannst du mir vielleicht noch etwas weiterhelfen?

Danke im Voraus!

Bezug
                        
Bezug
Beweis Halbordnung <=: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Mi 02.12.2009
Autor: Gonozal_IX

Hiho,

die strikte Definition einer Halbordnung ist:

Sei R eine zweistellige Relation und gelte weiterhin

i) R ist reflexiv
ii) R ist transitiv
iii) R ist antisymmetrisch

Dann ist R eine Halbordnung.

Die Begriffe reflexiv, transitiv und antisymmetrisch solltest du gehabt haben.....

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]