www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Beweis Existenz Integral
Beweis Existenz Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Existenz Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 So 22.05.2016
Autor: Ella

Aufgabe
Es sei f:[0, [mm] \infty) [/mm] -> [mm] \IR [/mm] eine Funktion, die für jedes t>0 auf dem Intervall [0,t] integrierbar ist. Es existiere [mm] \limes_{x\rightarrow\infty} [/mm] f(x) = c [mm] \in \IR [/mm] .
Zeigen Sie, dass dann bereits gilt:
[mm] \limes_{x\rightarrow\infty} \bruch{1}{x} \integral_{0}^{x}{f(t) dt} [/mm] = c.

Hey,

ich sitze vor dieser Aufgabe und habe echt keinerlei Vorstellung, wie diese Aufgabe auch nur gemeint ist. Wie ist zum Beispiel das x und t gemeint? Ich verstehe nicht, ob das x zum Beispiel nun zwischen 0 und t liegen muss, da das Integral ja "nur" auf [0,t] integrierbar ist.

Vielen Dank für jede Hilfe!!
LG



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Beweis Existenz Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 22.05.2016
Autor: Al-Chwarizmi


> Es sei f:[0, [mm]\infty)[/mm] -> [mm]\IR[/mm] eine Funktion, die für jedes
> t>0 auf dem Intervall [0,t] integrierbar ist. Es existiere
> [mm]\limes_{x\rightarrow\infty}[/mm] f(x) = c [mm]\in \IR[/mm] .
> Zeigen Sie, dass dann bereits gilt:
>  [mm]\limes_{x\rightarrow\infty}\ \ \bruch{1}{x} \integral_{0}^{x}{f(t) dt}\ =\ c\,.[/mm]
>  Hey,
>  
> ich sitze vor dieser Aufgabe und habe echt keinerlei
> Vorstellung, wie diese Aufgabe auch nur gemeint ist. Wie
> ist zum Beispiel das x und t gemeint? Ich verstehe nicht,
> ob das x zum Beispiel nun zwischen 0 und t liegen muss, da
> das Integral ja "nur" auf [0,t] integrierbar ist.


Guten Abend Ella

und
              [willkommenmr]

Definiere zum Beispiel   $\ F(x)\ :=\ [mm] \integral_{0}^{x}{f(t)\ dt}$ [/mm]
und          $\ m(x)\ :=\ [mm] \frac{F(x)}{x}$ [/mm]

m(x) steht dann für den Durchschnittswert von f über dem
Intervall von 0 bis x.

Nun soll der Grenzwert von m(x) für x [mm] \to \infty [/mm]  betrachtet werden.
Überleg dir also einmal, wie man zeigen kann, dass für jedes
positive [mm] \varepsilon [/mm]  ein Wert  K  bestimmt werden kann mit der
Eigenschaft, dass

       $\ [mm] |\,m(x)\,-\,c\,|\ [/mm] <\ [mm] \varepsilon [/mm] $   für alle x mit  x > K

LG  ,    Al-Chw.



Bezug
        
Bezug
Beweis Existenz Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Mo 23.05.2016
Autor: fred97


> Es sei f:[0, [mm]\infty)[/mm] -> [mm]\IR[/mm] eine Funktion, die für jedes
> t>0 auf dem Intervall [0,t] integrierbar ist. Es existiere
> [mm]\limes_{x\rightarrow\infty}[/mm] f(x) = c [mm]\in \IR[/mm] .
> Zeigen Sie, dass dann bereits gilt:
>  [mm]\limes_{x\rightarrow\infty} \bruch{1}{x} \integral_{0}^{x}{f(t) dt}[/mm]
> = c.
>  Hey,
>  
> ich sitze vor dieser Aufgabe und habe echt keinerlei
> Vorstellung, wie diese Aufgabe auch nur gemeint ist. Wie
> ist zum Beispiel das x und t gemeint? Ich verstehe nicht,
> ob das x zum Beispiel nun zwischen 0 und t liegen muss, da
> das Integral ja "nur" auf [0,t] integrierbar ist.

Sei x>0: mit [mm] \integral_{0}^{x}{f(t) dt} [/mm] ist das Integral von f über das Intervall [0,x] gemeint.

Tipp zur Aufgabe: Mittelwertsatz der Integralrechnung.

Edit: es geht auch ohne den Mittelwertsatz.

Sei [mm] \varepsilon [/mm] >0. Dann gibt es ein a>0 mit:

   [mm] c-\varepsilon [/mm] <f(t)< [mm] c+\varepsilon [/mm]  für alle t [mm] \ge [/mm] a.


Nun spalte auf:

[mm] \bruch{1}{x} \integral_{0}^{x}{f(t) dt}= \bruch{1}{x} \integral_{0}^{a}{f(t) dt}+ \bruch{1}{x} \integral_{a}^{x}{f(t) dt} [/mm]

für x [mm] \ge [/mm] a.

FRED
FRED


>
> Vielen Dank für jede Hilfe!!
> LG
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Beweis Existenz Integral: danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 Mo 23.05.2016
Autor: Ella

Super. vielen lieben Dank. Haben jetzt die Loesung hinbekommen ! :)
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]