www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Bestimmen von Matrix
Bestimmen von Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmen von Matrix: Korrektur
Status: (Frage) überfällig Status 
Datum: 16:25 Di 08.12.2009
Autor: Galboa

Aufgabe
Betrachte die Basen B :=((1,2),(2,1)) und C:=((3,2),(1,1)) von [mm] \IR² [/mm] und bestimme die Matrix [mm] M_{C}^B [/mm] (φ) für die linearen Abbildungen

(i) φ: [mm] \IR² [/mm] -> [mm] \IR² [/mm] , [mm] (x_{1},x_{2}) [/mm] -> [mm] (x_{1},-x_{2}) [/mm]
(ii) φ: [mm] \IR² [/mm] -> [mm] \IR² [/mm] , [mm] (x_{1},x_{2}) [/mm] -> [mm] (x_{1},2x_{2}) [/mm]
(iii) φ: [mm] \IR² [/mm] -> [mm] \IR² [/mm] , [mm] (x_{1},x_{2}) [/mm] -> [mm] (x_{1}+x_{2},x_{2}) [/mm]
(iv) φ: [mm] \IR² [/mm] -> [mm] \IR² [/mm] , [mm] (x_{1},x_{2}) [/mm] -> [mm] (x_{1}+x_{2},x_{1}+4x_{2}) [/mm]

Ich würde mich freuen wenn jemand über meien Lösung drüber schauen könnte, weil ich extrem unsicher bin ob ich mich nicht vertan hab bei der Bestimmung von [mm] M_{C}^B [/mm] (φ).

Hab irgendwo gelesen, dass ich [mm] M_{C}^B [/mm] (φ) durch [mm] B^{-1}*C [/mm] bekomm.

Also hab ich [mm] B^{-1} [/mm] bestimmt. Hab einfach [mm] B^{-1} [/mm] bestimmt durch B* [mm] \pmat{ x_{1} & x_{3} \\ x_{2} & x_{4} } [/mm] = [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm]
Dann hab ich für [mm] B^{-1} [/mm] = 1/3 * [mm] \pmat{ -3 & 2 \\ 6 & -1 } [/mm] erhalten.

Dann eben [mm] B^{-1}*C [/mm] gerechnet und dann für [mm] M_{C}^B [/mm] = 1/3* [mm] \pmat{ -5 & -1 \\ 16 & 5 } [/mm] erhalten.

=>

(i) -> [mm] \pmat{ -5 & -1 \\ -16 & -5 } [/mm]
(ii) -> [mm] \pmat{ -5 & -1 \\ 32 & 10 } [/mm]
(iii) -> [mm] \pmat{ 11 & 4 \\ 16 & 5 } [/mm]
(iv) -> [mm] \pmat{ 11 & 4 \\ 49 & 19 } [/mm]

Kann natürlich gut sein, dass meine Lösung totaler mist sein, also nicht davor zurückschrecken alles schlecht zu reden ;)
vielen dank

        
Bezug
Bestimmen von Matrix: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 10.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]