Bernoulli (glaub ich) < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:04 Sa 10.06.2006 | Autor: | dytronic |
Aufgabe | Vor der Welturaufführung des neuen Stücks der Theatergruppe " Die Schminke " sind kurz
nach Beginn des Kartenvorverkaufs alle Karten vergriffen. Nur auf dem Schwarzmarkt sind
noch Karten zu haben. Ein Schwarzhändler bietet 20 Karten an, darunter 8 gefälschte. Eine
Person kauft 4 Karten. Mit welcher Wahrscheinlichkeit erhält sie
a) nur echte Karten,
b) mindestens eine echte Karte,
c) genau eine gefälschte Karte ? |
Hallo,
auf die oben stehende aufgabe bin ich gestoßen und wollte wissen ob meine Ergebnisse richtig sind und ob ich hier das Bernoulli verfahren anwenden darf?
a) P (4; [mm] \bruch{12}{20};4) [/mm] : die erste 4 steht für die 4 gekauften karten, die [mm] \bruch{12}{20} [/mm] = [mm] \bruch{3}{5} [/mm] steht für eine richtige karte zu bekommen und die letzte 4 steht dass von den 4 karten alle echt sind:
[mm] \vektor{4 \\ 4} [/mm] * [mm] (\bruch{3}{5})^{4} [/mm] * [mm] (\bruch{2}{5})^{0} [/mm] = 1*0,1296*1 = 12,96 %
b) Hier wende ich zu schnelleren Berechnung die Gegenwahrscheinlichkeit an, also: höchstens keine echte Karte = alle falsch dann rechne ich 1- ergebnis:
P [mm] (4;\bruch{3}{5};0) [/mm] = [mm] \vektor{4 \\ 0} [/mm] * [mm] (\bruch{3}{5})^{0} [/mm] * [mm] (\bruch{2}{5})^{4} [/mm] = 1*1 * 0,0256 = 1- 0,0256 = 97,44%
c) P [mm] (4;\bruch{2}{5};1) [/mm] , hier muss mab mit 2/5 rechnen, da nach falschen karten gefragt ist = [mm] \vektor{4 \\ 1} [/mm] * [mm] (\bruch{2}{5})^{1} [/mm] * [mm] (\bruch{3}{5})^{3} [/mm] =4 * 0,4 * 0,216 = 34,56 %
Sit das richtig?
bin mir nicht ganz sicher ob ich mit bernoulli rechnen darf, da ja die wahrscheinlichkeit nicht immer konstant bleibt, weil wenn ich eien falsche karte kaufe, dann verändert sich aj die wahrscheinlichkeit...
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:57 Sa 10.06.2006 | Autor: | M.Rex |
> Vor der Welturaufführung des neuen Stücks der Theatergruppe
> " Die Schminke " sind kurz
> nach Beginn des Kartenvorverkaufs alle Karten vergriffen.
> Nur auf dem Schwarzmarkt sind
> noch Karten zu haben. Ein Schwarzhändler bietet 20 Karten
> an, darunter 8 gefälschte. Eine
> Person kauft 4 Karten. Mit welcher Wahrscheinlichkeit
> erhält sie
> a) nur echte Karten,
> b) mindestens eine echte Karte,
> c) genau eine gefälschte Karte ?
> Hallo,
>
> auf die oben stehende aufgabe bin ich gestoßen und wollte
> wissen ob meine Ergebnisse richtig sind und ob ich hier das
> Bernoulli verfahren anwenden darf?
>
> a) P (4; [mm]\bruch{12}{20};4)[/mm] : die erste 4 steht für die 4
> gekauften karten, die [mm]\bruch{12}{20}[/mm] = [mm]\bruch{3}{5}[/mm] steht
> für eine richtige karte zu bekommen und die letzte 4 steht
> dass von den 4 karten alle echt sind:
>
> [mm]\vektor{4 \\ 4}[/mm] * [mm](\bruch{3}{5})^{4}[/mm] * [mm](\bruch{2}{5})^{0}[/mm]
> = 1*0,1296*1 = 12,96 %
>
Korrekt
> b) Hier wende ich zu schnelleren Berechnung die
> Gegenwahrscheinlichkeit an, also: höchstens keine echte
> Karte = alle falsch dann rechne ich 1- ergebnis:
>
> P [mm](4;\bruch{3}{5};0)[/mm] = [mm]\vektor{4 \\ 0}[/mm] *
> [mm](\bruch{3}{5})^{0}[/mm] * [mm](\bruch{2}{5})^{4}[/mm] = 1*1 * 0,0256 = 1-
> 0,0256 = 97,44%
>
Auch korrekt
> c) P [mm](4;\bruch{2}{5};1)[/mm] , hier muss mab mit 2/5 rechnen,
> da nach falschen karten gefragt ist = [mm]\vektor{4 \\ 1}[/mm] *
> [mm](\bruch{2}{5})^{1}[/mm] * [mm](\bruch{3}{5})^{3}[/mm] =4 * 0,4 * 0,216 =
> 34,56 %
>
> Sit das richtig?
Yep, alles Korrekt und sehr gut erklärt.
>
> bin mir nicht ganz sicher ob ich mit bernoulli rechnen
> darf, da ja die wahrscheinlichkeit nicht immer konstant
> bleibt, weil wenn ich eien falsche karte kaufe, dann
> verändert sich aj die wahrscheinlichkeit...
>
Das wird ja mit Hilfe der Formel berücksichtigt, deswegen ist sie ja so gebräuchlich und praktisch.
Marius
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:03 Sa 10.06.2006 | Autor: | dytronic |
Mein Kumpel ist anderer meinung.... ich zweifle auch ein bisschen dran....wenn ich doch 1 falsche karte kaufe dann ist doch die wahrscheinlichkeit doch nicht mehr 8/20 sondern 7/19 oder wenn ich eien richtige kaufe ist es doch nicht mehr 12/20 sondern 11/ 19... erist der meinung mann muss es mit der kombinatorik errechnen, nach dem verfahhren wie groß die wahrscheinlichkeit ist 4 richige im lotto zu ziehen, also halt mit anderen zahlen....bin ejtzt selbst verwirrt
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:15 Sa 10.06.2006 | Autor: | M.Rex |
Zur Not zeichne doch mal ein Baumdiagramm und berechne daran die W.-keiten. Ich meine aber weiterhin, es geht auch mit Hilfe der Formel.
Marius
|
|
|
|