www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Behauptung Matrizen
Behauptung Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Behauptung Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Sa 04.11.2006
Autor: Informacao

Aufgabe
Seien A,B invertierbare Matrizen gleichen Typs. Dann lässt sich A durch endlich viele elementare Zeilentransformationen in B überführen.

Hallo!

Stimmt diese Behauptung oder stimmt sie nicht?

Ich bin mir nicht sicher..ich weiß, dass wenn man eine Matrix A in Zeilenstufenform bringen will, dass man dann geeignete Vielfache sucht um die Diagonale auf 1 zu bringen (der Rest muss ja =0 sein, wie beim Gauß-verfahren eben).
Wenn man jetzt diese Vielfache die man verwendet hat alle miteinander multipliziert kommt genau das Inverse der Matrix A raus..!

Aber wie kann ich das jetzt auf die Behauptung übertragen?

VIele Grüße
Informacao

        
Bezug
Behauptung Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Mo 06.11.2006
Autor: zahlenspieler

Hallo informacao,
>  Hallo!
> Seien A,B invertierbare Matrizen gleichen Typs. Dann lässt
> sich A durch endlich viele elementare
> Zeilentransformationen in B überführen.
>  
> Stimmt diese Behauptung oder stimmt sie nicht?
>

Stimmt!

> Ich bin mir nicht sicher..ich weiß, dass wenn man eine
> Matrix A in Zeilenstufenform bringen will, dass man dann
> geeignete Vielfache sucht um die Diagonale auf 1 zu bringen

Ähm, das geht aber nicht immer - u.z. dann, wenn es linear abhängige Zeilen in der Matrix gibt.

> (der Rest muss ja =0 sein, wie beim Gauß-verfahren eben).
> Wenn man jetzt diese Vielfache die man verwendet hat alle
> miteinander multipliziert kommt genau das Inverse der
> Matrix A raus..!
>
> Aber wie kann ich das jetzt auf die Behauptung übertragen?

Seien $A,B$ invertierbare [mm] $n\times [/mm] n$-Matrizen. Dann existiert ja auch die Inverse zu [mm] $C=AB^{-1}$. [/mm]
Und es ist [mm] $C^{-1}A=B$. [/mm] D.h. genau die Zeilenumformungen, die die Einheitsmatrix in [mm] $C^{-1}$ [/mm] überführt haben, überführen $A$ in $B$.
Gruß
zahlenspieler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]