www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Bedingte Wahrscheinlichkeiten
Bedingte Wahrscheinlichkeiten < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 So 13.02.2011
Autor: matheman

Aufgabe
1)
95% eines Produktes sind fehlerfrei. Im Mittel gehören von 1000 Produkten 800 zur Güteklasse A, der Rest ist Güteklasse B.

a) Wie groß ist die W'keit, dass ein fehlerfreies Produkt zur Güteklasse A gehört?
b) Wie groß ist die W'keit, dass ein fehlerhaftes Produkt zur Güteklasse B gehört?



2)
Ein Computerhersteller bezieht 70% seiner Festplatten von einem Lieferanten A, dessen Festplatten zu 98% einwandfrei sind. Die restlichen 30% bezieht er von eienm Lieferanten B, dessen Festplatten zu 5% fehlerhaft, aber billiger sind. Nun ist eine zufällig eingebaute Festplatte

a) fehlerfrei. Mit welcher W'keit stammt sie vom Lieferanten A?
b) fehlerhaft. Mit welcher W'keit stammt sie vom Lieferanten B?

Hallo,

beide Fragen stammen aus einem Kapitel "Bedingte W'keiten".

Ich habe die Lösungen aus dem Lösungsbuch und arbeite sie gerade nach:

Lösung zu 1:

a) P(...) = 0.8 * 0.95 = 0.76
b) P(...) = 0.2 * 0.05 = 0.01

Lösung zu 2:

a) P(...) = [mm] \bruch{0.7 * 0.98}{0.7 * 0.98 + 0.3 * 0.95} [/mm] = 0.71
b) P(...) = [mm] \bruch{0.3 * 0.05}{0.3 * 0.05 + 0.7 * 0.02} [/mm] = 0.52

Nun meine Frage:

Rechnerisch sind mir beide Lösungswege klar. Aber ich verstehe nicht warum bei 1) nicht nach demselben Ansatz wie bei 2 gelöst wird. Für mich sind die Lösungen bei

1a) P(...) = [mm] \bruch{0.8 * 0.95}{0.8 * 0.95 + 0.2 * 0.95} [/mm]
1b) P(...) = [mm] \bruch{0.2 * 0.05}{0.8 * 0.05 + 0.2 * 0.05} [/mm]

Die Art der Aufgabenstellung ist doch bei beiden Aufgaben die gleiche, oder?

matheman



        
Bezug
Bedingte Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 So 13.02.2011
Autor: kamaleonti

Hi,
> 1)
>  95% eines Produktes sind fehlerfrei. Im Mittel gehören
> von 1000 Produkten 800 zur Güteklasse A, der Rest ist
> Güteklasse B.
>  
> a) Wie groß ist die W'keit, dass ein fehlerfreies Produkt
> zur Güteklasse A gehört?
>  b) Wie groß ist die W'keit, dass ein fehlerhaftes Produkt
> zur Güteklasse B gehört?

> Lösung zu 1:
>  
> a) P(...) = 0.8 * 0.95 = 0.76
>  b) P(...) = 0.2 * 0.05 = 0.01

Diese Lösungen sind m. E. nicht richtig (siehe unten)

>  
> Lösung zu 2:
>  
> a) P(...) = [mm]\bruch{0.7 * 0.98}{0.7 * 0.98 + 0.3 * 0.95}[/mm] => 0.71
>  b) P(...) = [mm]\bruch{0.3 * 0.05}{0.3 * 0.05 + 0.7 * 0.02}[/mm] => 0.52

>  
> Nun meine Frage:
>  
> Rechnerisch sind mir beide Lösungswege klar. Aber ich
> verstehe nicht warum bei 1) nicht nach demselben Ansatz wie
> bei 2 gelöst wird. Für mich sind die Lösungen bei
>  
> 1a) P(...) = [mm]\bruch{0.8 * 0.95}{0.8 * 0.95 + 0.2 * 0.95}[/mm]
>  
> 1b) P(...) = [mm]\bruch{0.2 * 0.05}{0.8 * 0.05 + 0.2 * 0.05}[/mm]

Das sehe ich genauso - die oben angebenen Lösungen, die du wohl aus dem Lehrbuch hast, sind Wahrscheinlichkeiten für ganz andere Ereignisse:
[mm] 1a\*) [/mm] Wie groß ist die W'keit, dass ein Produkt fehlerfrei ist und zur Güteklasse A gehört?
[mm] 1b\*) [/mm] Wie groß ist die W'keit, dass ein Produkt fehlerhaft ist und zur Güteklasse B gehört?

Gruß


Bezug
                
Bezug
Bedingte Wahrscheinlichkeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:27 So 13.02.2011
Autor: matheman

Ja genau. Wir haben eine Kopie der Lösungsbuchseite bekommen.

Aber dann scheint meine Lösung ja richtig zu sein. **freu**

Danke für deine Antwort!

matheman

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]