www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Bedingte Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeit: Münzwurf
Status: (Frage) beantwortet Status 
Datum: 12:47 So 01.02.2009
Autor: xchookie

Aufgabe
In einer Urne liegen drei Münzen, darunter zwei "gefälschte". Die Wahrscheinlichkeit, daß beim Werfen "Zahl" fällt, ist bei der ersten Münze 1/4, bei der zweiten 1/2 und bei der dritten 3/4. Eine der drei Münzen wird zufällig ausgewählt und vier mal geworfen.
Es bezeichne [mm] A_{i} [/mm] (i=1,2,3) das Ereignis, daß die i-te Münze ausgewählt wurde.
a) Bestimmen Sie die Wahrscheinlichkeit für das Ereignis B, daß bei den ersten drei Würfen jeweils "Zahl" fällt.
b) Bestimmen Sie für i=1,2,3 die bedingte Wahrscheinlichkeit [mm] P(A_{i}|B) [/mm] dafür, daß am Anfang die i-te Münze ausgewählt wurde, wenn man bereits weiß, daß bei den ersten drei Würfen jeweils "Zahl" gefallen ist.
c) Es sei C das Ereignis, daß im vierten Wurf "Zahl" fällt. Bestimmen Sie die bedingte Wahrscheinlichkeit P(C|B) dafür, daß beim vierten Wurf "Zahl" fällt, wenn man bereits weiß, daß bei den ersten drei Würfen jeweils "Zahl" gefallen ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Zu Teil a):
Die [mm] A_{i} [/mm] sind alle 1/3, da man ja nur 3 Münzen zur Auswahl hat.
Lässt sich nun für die Lösung der a) die totale Wahrscheinlichkeit benutzen, also: P(B) = [mm] P(B|A_{1})*P(A_{i})+P(B|A_{2})*P(A_{2})+P(B|A_{3})*P(A_{3}), [/mm] wobei
z.B. [mm] P(B|A_{i}) [/mm] = P(B [mm] \cap A_{i})/P(A_{i}); [/mm] muß hierbei dann noch das 1/3 berücksichtigt werden?

        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Fr 06.02.2009
Autor: luis52

Moin  xchookie,

zunaechst ein [willkommenmr]

B tritt ein, wenn in den ersten drei Wuerfen nur "Zahl" eintritt. Mithin koennen wir schreiben [mm] $B=Z_1\cap Z_2\cap Z_3$. [/mm] Nennen wir eines dieser Ereignisse Z. Dann gilt mit deinem Ansatz


$P(Z) = [mm] P(Z|A_{1})\cdot{}P(A_{1})+P(Z|A_{2})\cdot{}P(A_{2})+P(Z|A_{3})\cdot{}P(A_{3})=\frac{1}{4}\times\frac{1}{3}+\frac{1}{2}\times\frac{1}{3}+\frac{4}{4}\times\frac{1}{3}=\frac{1}{2}$. [/mm]
  

Da die Ereignisse unabhaengig sind, folgt [mm] $P(B)=(1/2)^3=1/8$. [/mm]


vg Luis                                                

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]