www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - BCG
BCG < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

BCG: acb
Status: (Frage) beantwortet Status 
Datum: 17:00 Do 30.09.2010
Autor: inkognitro

...
        
Bezug
BCG: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 Do 30.09.2010
Autor: felixf

Moin!

> Ich versuche den dritten Moment einer gemischten Erlangen
> Verteilung zu ermitteln. Gegeben sind der Erwartungswert
> und der quadrierte Variationskoeffizient.

Was bitteschoen ist die gemischte Erlangen-Verteilung? Hat das irgendwas mit der []Erlang-Verteilung zu tun?

Wenn man bei google danach sucht, findet man im Wesentlichen nur deine Frage(n).

LG Felix


Bezug
                
Bezug
BCG: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:38 Fr 01.10.2010
Autor: inkognitro

...
Bezug
                        
Bezug
BCG: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:51 Fr 01.10.2010
Autor: vivo

Hallo,

es sollte doch die momenterzeugende funktion der gemischten verteilung, die linearkombination der mef der einzelnen verteilungen sein. Irre ich mich?

Und daraus könntest du dann ja alles herleiten.

gruß

Bezug
                                
Bezug
BCG: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:15 Sa 02.10.2010
Autor: inkognitro

...
Bezug
                                        
Bezug
BCG: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Sa 02.10.2010
Autor: vivo

Hallo,

bitte schreib mir mal den E(X) deiner Verteilung. Und du willst ausrechnen [mm] E(X^3) [/mm] richtig?

gruß

Bezug
        
Bezug
BCG: Dichte bekannt?
Status: (Antwort) fertig Status 
Datum: 14:29 Sa 02.10.2010
Autor: Infinit

Hallo inkognitro,
für das dritte Moment wird ja auf jeden Fall eine Größe mit [mm] X^3 [/mm] vorkommen. Den Erwatungswert kennst Du, den quadratischen Erwartungswert auch. Wenn Du die Dichte kennst, kannst Du auch noch [mm] E(X^3) [/mm] bestimmen.
Viele Grüße,
Infinit


Bezug
                
Bezug
BCG: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Sa 02.10.2010
Autor: inkognitro



Bezug
                        
Bezug
BCG: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Sa 02.10.2010
Autor: vivo

Hallo,

$$ [mm] E[X^3]=\int [/mm] x^3f(x) dx$$

da deine Dichte so aussieht:

[mm] $f(x)=pf_1(x)+(1-p)f_2(x)$ [/mm]

folgt

[mm] $$E[X^3]= \int x^3 (pf_1(x)+(1-p)f_2(x)) dx=\int x^3 pf_1(x)+x^3(1-p)f_2(x) dx=\int x^3 pf_1(x)dx+\int x^3(1-p)f_2(x) [/mm] dx$$

gruß




Bezug
                                
Bezug
BCG: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Sa 02.10.2010
Autor: vivo

Hallo,

wenn ich mich jetzt nicht verrechnet habe, dann kommt raus:

[mm] $$E[X^3]= p\frac{k_1^3+3k_1^2+2k_1}{\lambda_1^3} [/mm] + [mm] (1-p)\frac{k_2^3+3k_2^2+2k_2}{\lambda_2^3}$$ [/mm]

gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]