Aufstellen einer Clairaut DGL < DGL < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:01 Do 28.10.2010 | Autor: | bollera |
Aufgabe | Stellen Sie für folgende Geradenscharen die entsprechenden Clairautschen Differentialgleichungen auf und bestimmen Sie ihre Einhüllenden:
a) die Strecke zwischen den Schnittpunkten mit der x-Achse und der y-Achse ist konstant.
b)das mit den Koordinatenachsen gebildete Dreieck hat konstante Fläche. |
Hallo Leute,
also ich muss diese Gleichungen, y=kx+d, aufstellen und bezeichne dazu den Abschnitt auf der y-Achse als d und den auf der x-Achse als -d/k.D
Da jetzt die in a) geforderte Strecke konstant, sagen wir s, sein soll, habe ich Pythg. Lehrsatz angesetzt und komme auf d [mm] =\bruch{s*k}{\wurzel{1+k^2}}.
[/mm]
Die Clairautsche Gleichung lautet dann, mit dem Ansatz y'=k, y=xy'+f(y'), wobei [mm] f(t)=\bruch{s*t}{t^2+1} [/mm] und [mm] f'(t)=\bruch{s*\wurzel{t^2+1}}{(t^2+1)^2} [/mm] ist.
Wenn ich jetzt x = -f'(t) und y = -t*f'(t)+f(t) ansetze, komme ich auf das gar nicht schöne Endergebnis (also die Einhüllende der Geradenschar)
y = [mm] -x*\wurzel{\wurzel[3]{\bruch{s^2}{x^2}}-1}
[/mm]
Meine Frage: Kann denn das stimmen? Würdet ihr das auch so ansetzen? Und was soll ich mit den ganzen Beträgen machen? (Hab jetzt einfach mal immer nur die positive Wurzel genommen)
Für b ist es mir ähnlich ergangen, hier ist die Enveloppe [mm] y=\bruch{c}{2x}, [/mm] wobei c der constante Flächeninhalt ist.
Bin für jeden Hinweis dankbar!
Danke danke schon mal!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:42 Sa 30.10.2010 | Autor: | moudi |
Hallo bollera
Ich weiss nicht ob die Differentialgleichung stimmt. Ich habe die Einhuellenden mit anderen Methoden bestimm (ohne eine DGl zu loesen).
Im Fall a) sollt man auf die Asteroide [mm] $x^{2/3}+y^{2/3}=s^{2/3}$ [/mm] kommen.
Der Fall b) ist korrekt.
mfG Moudi
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:43 Mo 01.11.2010 | Autor: | lucon |
Hallo!
Ich habe zu a) noch eine Frage bzw. wie kommst du zu dieser Lösung.
Ich hänge gerade bei [mm] f(t)=s*t/\wurzel{t^{2}+1} [/mm] und [mm] f'(t)=s/\wurzel{(t^{2}+1)^{3}} [/mm] .
dann setze ich x =-f'(t) ein und erhalte [mm] y=-t*f'(t)+f(t)=-st^{3}/\wurzel{(t^{2}+1)^{3}}
[/mm]
Stimmt das bis jetzt bzw. wo habe ich hier den Fehler gemacht bzw. wie kommst du auf diese Lösung? weil ich komme irgendwie nicht auf die gleiche Lösung!
lg
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:29 Mo 01.11.2010 | Autor: | moudi |
Hallo Lucon
Ich erklaere, wie ich es gemacht habe.
Ich nehme an dass eine Funktionenschar $y=F(x,c)$ gegeben sind, wobei der $c$ der Scharparameter ist.
Beispiel zu b). Ist A die Flaeche des Dreiecks und ist (c,0) der Schnittpunkt der Gerade mit der x-Achse, dann ist (0,2A/c) der Schnittpunkt mit der y-Achse (damit das Dreieck die Flaeche A hat) und die Funktionenschar=Geradenschar ist gegeben durch die Funktion [mm] $y=F(x,c)=-\frac{A}{c^2}(x-c)$.
[/mm]
Gesucht ist jetzt die Einhuellende der Kurvenschar. Die Einhuellende beruehrt jede Kurve der Kurvenschar. Sei $((x(c),y(c))$ der Beruehrungspunkt der Einhuellenden mit der Kurve der Schar, die zum Scharparameter c gehoert. Ich parametrisiere also die gesuchte Kurvenschar mit dem Scharparameter c.
Dann sind x(c) und y(c) durch 2 Bedingungen charakterisiert.
1. Der Punkt (x(c),y(c)) liegt auf der Kurve zum Parameter c. D.h. $y(c)=F(x(c),c)$.
2. Die Steigung der Einhuellenden im Punkt $(x(c),y(c))$ stimmt mit der Steigung der der Kurve zum Parameter c in $(x(c),y(c))$ ueberein, das heisst [mm] $\frac{\frac{d}{dc}y(c)}{\frac{d}{dc}x(c)}=\frac{d}{dx}F(x(c),c)$ [/mm] oder [mm] $\frac{y'(c)}{x'(c)}=F'(x(c),c)$ [/mm] wobei die Ableitungen "richtig" zu verstehen sind.
Die 2. Bedingung sagt gerade, dass die Einhuellende die Kurve zum Parameter c der Kurvenschar im Punkt $(x(c), y(c))$ beruehrt
Ich nehme jetzt die 1. Bedingung und leite nach c(!) ab:
[mm] $\frac{d}{dc}y(c)=\frac{d}{dc}F(x(c),c)$.
[/mm]
Es ergibt sich dann rechts mit der verallgemeinerten Kettenregel
[mm] $y'(c)=\frac{\partial}{\partial x}F(x(c),c)\cdot x'(c)+\frac{\partial}{\partial c}F(x(c),c)$ [/mm] oder [mm] $y'(c)=F'(x(c),c)\cdot x'(c)+\frac{\partial}{\partial c}F(x(c),c)$.
[/mm]
Wegen der 2. Bedingung gilt [mm] $y'(c)=F'(x(c),c)\cdot [/mm] x'(c)$, deshalb reduziert sich die obenstehende Gleichung zur Enveloppen-Bedingung [mm] $\frac{\partial}{\partial c} [/mm] F(x(c),c)=0 \ [mm] (\ast)$.
[/mm]
Die Enveloppen-Bedingung [mm] $(\ast)$ [/mm] nach x aufgeloest liefert $x(c)$, was man nachher in die Funktionsschar einsetzen kann um $y(c)=F(x(c),c)$ zu erhalten. Man hat dann eine Parameterdarstellung (x(c),y(c)) der Enveloppe. Eliminierung des Parameters c fuehrt dann zu einer Koordinatengleichung der Enveloppe.
Ich demonstriere das Verfahren am Beispiel a). (Alle Berechnungen wurden mit dem TI-89 durchgefuehrt.)
Sei s die Laenge der Strecke und c der x-Achsenabschnitt, dann ist [mm] $\sqrt{s^2-c^2}$ [/mm] der y-Achsenabschnitt. Die Steigung der Strecke ist dann [mm] $-\frac{\sqrt{s^2-c^2}}{c}$ [/mm] und die Geradenschar ist gegeben durch [mm] $F(x,c)=-\frac{\sqrt{s^2-c^2}}{c}(x-c)$.
[/mm]
Die Eveloppenbedingung fuehrt zu [mm] $\frac{\partial}{\partial c}\left(-\frac{\sqrt{s^2-c^2}}{c}(x-c)\right)=\frac{\sqrt{s^2-c^2}x}{c^2}+\frac{x-c}{\sqrt{s^2-c^2}}=0$.
[/mm]
Nach x aufgeloest erhaelt man [mm] $x(c)=\frac{c^3}{s^2}$ [/mm] und in die Funktionenschar eingesetzt [mm] $y(c)=F(x(c),c)=-\frac{\sqrt{s^2-c^2}}{c}(\frac{c^3}{s^2}-c)=\frac{(s^2-c^2)^{3/2}}{s^2}$.
[/mm]
Eind Parameterdarstellung der Enveloppe ist also gegeben durch [mm] $(x(c),y(c))=(\frac{c^3}{s^2},\frac{(s^2-c^2)^{3/2}}{s^2})$. [/mm]
Um den Parameter c zu eliminieren bemerkt man, dass aus [mm] $x=\frac{c^3}{s^2}$ [/mm] folgt [mm] $xs^2=c^3$ [/mm] und daraus [mm] $c^2=x^{2/3}s^{4/3}$. [/mm] Setzt man das ein, so ergibt sich [mm] $y=(s^{2/3}-x^{2/3})^{3/2}$ [/mm] oder in einer symmetrischeren Form
[mm] $x^{2/3}+y^{2/3}=s^{2/3}$.
[/mm]
mfG Moudi
|
|
|
|